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Resumen

En este resumen se pretende hacer una introducción al contenido de esta memoria con la
intención de plantear al lector una idea general de la misma. Aunque resulta complicado
resumir algo tan extenso, se pretenden mencionar los conceptos más importantes con el
fin de ilustrar lo máximo posible cada uno de los capítulos que la constituyen haciendo un
breve recorrido por cada uno de ellos. Puesto que en el programa del Grado en Matemáticas
de la Universidad de Murcia no consta el estudio de los retículos de Banach, en este trabajo
se parte de una base que se asume ha sido adquirida en asignaturas como Topología de
Espacios Métricos o Análisis Funcional y se definen, a partir de ahí, todas las demás nociones
necesarias. A pesar de ello, parece coherente y lógico repasar todos aquellos criterios
básicos que se suponen ya conocidos en un primer capítulo introductorio para facilitar su
comprensión.

El principal objetivo de esta memoria consiste en exponer un retículo de Banach
separable para el cual cualquier otro se puede identificar como una copia isométrica suya,
es decir, un retículo de Banach universal inyectivo para la clase de los retículos de Banach
separables. Este resultado, detallado en el Capítulo 4 mediante un profundo análisis de
la demostración que se puede encontrar en el artículo Separable Universal Banach Lattices
[Leung et al., 2019], es fundamental pues nos permite ser capaces de comparar un retículo
de Banach cualquiera con uno particular mediante el orden dado por la inclusión. Antes de
enfrentar la prueba del ya citado artículo, se presenta una contextualización en conceptos
como retículo vectorial y retículo de Banach, y una serie de propiedades imprescindibles
para su demostración. Además, he considerado de gran interés mostrar primero una
versión equivalente para espacios de Banach, el Teorema de Banach-Mazur, que plantea la
necesidad de desarrollarlo más concretamente para retículos de Banach.

Mediante el Capítulo 1 se hace una introducción a conceptos razonablemente sencillos
pero necesarios para el desarrollo de este trabajo. He encontrado natural el dividirlo en
dos secciones: una de topología y otra de análisis, ya que son las principales ramas en las
que se fundamenta el contenido de esta memoria. En la sección de topología, la mayor
parte de las definiciones y primeras proposiciones han sido obtenidas de los portales web
mencionados en la sección 4.2, aunque también se pueden consultar en los apuntes de
la asignatura de Topología de Espacios Métricos [Alías Linares, 2017]. Estos desembocan
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en un resultado bien conocido, el hecho de que una aplicación continua e inyectiva de un
espacio topológico compacto en un Hausdorff es un homeomorfismo, que será crucial en
futuras demostraciones de secciones y capítulos próximos. También se incluye un apartado
con algunas cuestiones relativas a la topología producto, entre las cuales se encuentra
el teorema de Tychonoff. Estas serán fundamentales para hallar una topología para el
espacio de Cantor visto como producto de espacios topológicos tras su identificación como
el conjunto ∆, que será el protagonista del último subapartado de topología. Este espacio
cuenta con unas propiedades que serán elaboradas y más tarde empleadas en la búsqueda
del espacio de Banach separable universal inyectivo del Capítulo 3. Respecto a la sección
relativa a análisis, en ella tan solo se definen las ideas más esenciales de los espacios de
Banach, de las cuales cabe destacar las de topología débil y topología débil estrella. Por
último, se incluye un corolario basado en el teorema de Hahn-Banach, otro resultado útil
para la demostración del teorema de Banach-Mazur, que se puede encontrar en el Capítulo
3.

El siguiente es el Capítulo 2, que consiste en una extensa introducción a los retículos de
Banach inspirada en la tesis de José David Rodríguez Abellán [Rodríguez Abellán, 2021]
y en las notas de la charla que A. W. Wickstead dio en la Positivity V conference de
julio de 2007 en Belfast [Wickstead, 2007]. En primer lugar, se expone el concepto de
retículo vectorial, un espacio vectorial real ordenado cerrado para ínfimos y supremos en
el cual las operaciones de suma y producto garantizan la compatibilidad entre el orden y
la estructura de espacio vectorial. Esto induce a la definición de retículo de Banach, un
retículo vectorial que además cuenta con una norma compatible con el orden y con la
cual es un espacio de Banach. Esta primera subsección está acompañada de gran cantidad
de ejemplos extraídos de los libros [Meyer-Nieberg, 1991] y [Schaefer, 1974], además
de propiedades elementales de los retículos vectoriales y una serie de desigualdades e
identidades que serán necesarias en el Capítulo 4. Cabe destacar el caso de las funciones
reales continuas C(K) definidas en un cierto conjunto compacto K con la norma del
infinito y el orden punto a punto o el caso de las funciones Lp(µ) con su respectiva norma
‖·‖p y el orden en casi todo punto como ejemplos fundamentales de retículos de Banach.
Los dos siguientes subapartados de este capítulo se centran en cuestiones derivadas de las
definiciones previas que serán aplicadas en el propio análisis del artículo en el capítulo
final. Por un lado, se deduce el hecho de que todo retículo de Banach es arquimedeano, es
decir, cumple la propiedad arquimedeana. Por otro lado, los conceptos de ideales y bandas
en el contexto de un retículo vectorial, en especial de bandas de proyección, llevan al
teorema espectral de Freudenthal y en particular a un importante corolario fruto de varias
de las proposiciones de esta sección que también será clave para el principal resultado
de esta memoria. Finalmente, resulta interesante conocer una versión del teorema de
Hahn-Banach para operadores positivos aplicada a retículos de Banach, cuya demostración
es completamente análoga a la original.

La finalidad del Capítulo 3 es la de encontrar un espacio de Banach que cumpla con el
objetivo de esta memoria, es decir, que contenga una copia isométrica de todos los espacios
de Banach separables. El teorema de Banach-Mazur no solo demuestra este hecho, sino que
prueba que dicho espacio de Banach es el espacio de las funciones reales continuas C[0, 1]
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definidas en el intervalo [0, 1] o, en su defecto, también se puede argumentar la validez
del conjunto ∆ mediante la demostración expuesta. Para poder llegar a este resultado, es
imprescindible apoyarse en el teorema de Banach-Alaoglu, el cual afirma que la bola cerrada
del dual de un espacio de Banach dotado de la topología débil estrella relativa es compacta.
Una aplicación práctica del teorema es comparar mediante el orden dado por la inclusión
los conjuntos C[0, 1] y L1[0, 1]. Es evidente que viéndolos como espacios de Banach serán
comparables y, más precisamente, L1[0, 1] tendrá una copia isométrica dentro de C[0, 1]

a consecuencia del teorema de Banach-Mazur. En cambio, si los pretendemos comparar
como retículos de Banach, es decir, si buscamos un homomorfismo inyectivo de retículos
de Banach entre ellos, veremos que es imposible mediante un sencillo procedimiento por
reducción al absurdo. Esto será destacable en el siguiente capítulo, ya que no es casualidad
que el retículo de Banach universal inyectivo para la clase de los retículos de Banach
separables, es decir, aquel que contiene una copia isométrica de todos los demás, sea una
mezcla de ambos.

El principal propósito de esta memoria, ya comentado anteriormente, se expone en
el Capítulo 4. Considero humildemente que la mayor parte de mi contribución a este
problema se ve reflejada aquí, ya que a pesar de exponer una prueba obtenida del artículo
Separable Universal Banach Lattices [Leung et al., 2019], he sido capaz de esquematizar
y detallar todas y cada una de las ideas en él presentes. Las gráficas, lemas y resultados
previos a la demostración del resultado que he creado en este capítulo facilitan y simplifican
su entendimiento, aunque a lo largo de toda la memoria también se pueden apreciar muchos
otros detalles fundamentales que estaban ausentes y no aparecían en el ya citado artículo,
por ejemplo, algunas identidades que se cumplen en retículos vectoriales, las definiciones
y propiedades de las bandas e ideales o el teorema espectral de Freudenthal, todos ellos
presentes en el Capítulo 2. Para la prueba del resultado se presenta un nuevo concepto, el
de árbol finitamente ramificado, que no es más que un árbol en cuyos vértices se sitúa un
vector positivo de un retículo de Banach que es igual a la suma de los vectores disjuntos
dos a dos que se asignan a todos los vértices que salen de él; y se recurre repetidamente a
la evidente observación de que cada nivel del árbol compone una partición del vector del
vértice raíz. La conclusión del teorema no es solo la existencia de un retículo de Banach
universal inyectivo para la clase de los retículos de Banach separables, sino que muestra
que se trata del retículo de las funciones continuas de ∆ en las funciones L1[0, 1].

Las fuentes para la redacción de esta memoria están recogidas al final de ella, aunque
se irán citando a lo largo de todo el trabajo en las introducciones de las distintas secciones.
Si bien es cierto que existe una bibliografía en la que aparecen todos los libros y artículos
consultados, he creado un capítulo previo en el que aparece un listado extenso de las
páginas web visitadas que han contribuido a su elaboración, principalmente del capítulo
introductorio.
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Abstract

This abstract is intended to serve as an introduction to the content of this memoir, so as
to give the reader a general idea of it. Although it is difficult to summarize something so
extensive, its most important concepts will be mentioned in order to illustrate each of the
chapters that constitute it as much as possible, making a brief journey through each one of
them. Since the study of Banach lattices is not included in the program of the Bachelor
of Science in Mathematics at Universidad de Murcia, this report starts from a basis that is
assumed to have been acquired in courses such as Topology of Metric Spaces or Functional
Analysis and, from there, all the other necessary notions are defined. Despite this, it seems
coherent and logical to review all those basic criteria that are supposed to be already known
in a first introductory chapter to facilitate its understanding.

The main objective of this memoir is to expose a separable Banach lattice for which any
other can be identified as an isometric copy of it, that is, a universal injective Banach lattice
for the class of all separable Banach lattices. This result, detailed in Chapter 4 through an
in-depth analysis of the proof that can be found in the article Separable Universal Banach
Lattices [Leung et al., 2019], is fundamental because it allows us to be able to compare
any Banach lattice to a particular one by the order given by inclusion. Before facing the
proof of the aforementioned article, a contextualization in concepts such as vector lattice
and Banach lattice, and a series of essential properties needed for their demonstration
are presented. In addition, I have considered of great interest to first show an equivalent
version for Banach spaces, the Banach-Mazur theorem, which raises the need to develop it
more specifically for Banach lattices.

Through Chapter 1 an introduction to reasonably simple but necessary concepts for
the development of this work is made. I have found it natural to divide it into two sections:
one for topology and the other for analysis, since they are the main branches on which
the content of this memoir is based. In the topology section, most of the definitions
and first propositions have been obtained from the web portals mentioned in the 4.2
section, although they can also be consulted in the notes of the course of Topology of
Metric Spaces [Alías Linares, 2017]. All these lead to a well-known result, the fact that a
continuous injective application from a compact topological space into a Hausdorff space
is a homeomorphism, which will be crucial in future proofs of the upcoming sections and
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chapters. It also includes a section with some questions related to product topology, among
which is Tychonoff’s theorem. These will be fundamental to find a topology for the Cantor
space seen as a product of topological spaces after its identification as the set ∆, which will
be the focus of our last topology subsection. This space has some properties that will be
developed and later used in our search for a separable universal injective Banach space in
Chapter 3. Regarding the section on analysis, it only defines the most essential ideas of
Banach spaces, of which those of weak topology and weak star topology should be noted.
Finally, a corollary based on the Hahn-Banach theorem is included, another useful result
for the proof of the Banach-Mazur theorem, which can be found in Chapter 3.

Next is Chapter 2, which consists of an extensive introduction to Banach lattices
inspired by the thesis of José David Rodríguez Abellán [Rodríguez Abellán, 2021] and by
the notes from the talk that AW Wickstead gave at the Positivity V conference July 2007
in Belfast [Wickstead, 2007]. In the first place, the concept of vector lattice is exposed,
a real ordered vector space closed for infima and suprema in which the operations of
addition and product guarantee the compatibility between the order and the vector space
structure. This leads to the definition of a Banach lattice, a vector lattice that has also a
norm compatible with the order and with which it is a Banach space. This first subsection is
accompanied by a large number of examples taken from the books [Meyer-Nieberg, 1991]
and [Schaefer, 1974], as well as elementary properties of vector lattices and a series of
inequalities and identities that will be necessary in Chapter 4. It is worth highlighting
the case of the continuous real functions C(K) defined in a certain compact set K with
the uniform norm and the pointwise order or the case of the functions Lp(µ) with their
respective norm ‖·‖p and the order in almost every point as fundamental examples of
Banach lattices. The next two subsections of this chapter focus on issues derived from
the previous definitions that will be applied in the analysis of the article itself in the final
chapter. On the one hand, the fact that every Banach lattice is Archimedean, that is, that
fulfills the Archimedean property, follows. On the other hand, the concepts of ideals and
bands in the context of a vector lattice, especially projection bands, lead to Freudenthal’s
spectral theorem and, in particular, to an important corollary resulting from several of the
propositions in this section that will also be basic for the main result of this memoir. Finally,
it is interesting to know a version of the Hahn-Banach theorem for positive operators
applied to Banach lattices, whose proof is completely analogous to the original one.

The purpose of Chapter 3 is to find a Banach space that meets the objective of this
report, that is, that contains an isometric copy of all separable Banach spaces. The Banach-
Mazur theorem not only proves this fact, but also proves that this Banach space is the
space of continuous real functions C[0, 1] defined on the interval [0, 1] or, alternatively, the
validity of the set ∆ can also be argued by the exposed proof. In order to reach this result,
it is essential to rely on the Banach-Alaoglu theorem, which states that the closed ball of
the dual of a Banach space endowed with their weak star relative topology is compact. A
practical application of the theorem is to compare the sets C[0, 1] and L1[0, 1] by means
of the order given by inclusion. It is obvious that by regarding them as Banach spaces
they will be comparable and, more precisely, L1[0, 1] will have an isometric copy within
C[0, 1] as a consequence of the Banach-Mazur theorem. On the other hand, if we try to
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compare them as Banach lattices, that is, if we look for an injective homomorphism of
Banach lattices between them, we will see that this is impossible by making use of a simple
procedure of reducing it to an absurdity. This will be emphasized in next chapter, since it is
not a coincidence that the universal injective Banach lattice for the class of all separable
Banach lattices, that is, the one that contains an isometric copy of all others, is a mixture of
both of them.

The main purpose of this memoir, already commented previously, is exposed in Chapter
4. I humbly consider that my major contribution to this problem is reflected here, since
despite of exposing a proof obtained from the article Separable Universal Banach Lattices
[Leung et al., 2019], I have been able to outline and detail each and every idea presented
in it. The graphics, lemmas and results prior to the demonstration of the result that I
have created in this chapter facilitate and simplify its understanding, although throughout
this report many other fundamental details that were absent and did not appear in the
aforementioned article can be found, for example, some identities that are fulfilled in
vector lattices, the definitions and properties of bands and ideals, or Freudenthal’s spectral
theorem, all of them present in Chapter 2. To proof the result a new concept is presented,
that of finitely branched tree, which is basically a tree at whose vertices a positive vector of
a Banach lattice that is equal to the sum of the pairwise disjoint vectors that are assigned
to all vertices that come out of it is placed; and the obvious observation that each level
of the tree composes a partition of the vector of the root vertex is highly recurrent. The
conclusion of the theorem is not only the existence of a universal injective Banach lattice
for the class of all separable Banach lattices, but also shows that it is the lattice of the
continuous functions from ∆ into the functions L1[0, 1].

The resources for this memoir are listed at the end of it, although they will be cited
throughout the whole report in the introductions of its different sections. While it is true
that there is a bibliography in which all the books and articles consulted appear, I have
created a previous chapter where an extensive list of all the visited webpages that have
contributed to its elaboration, mainly to the introductory chapter, can be found.
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CHAPTER 1
Introduction

1.1 Topology

In this section a great deal of useful and well-known topological results will be introduced.
Despite the fact that some of them are very elementary, they will serve as a basis for proofs
of complex ideas described in the following chapters, specially Chapter 3. These were
extracted from [Kechris, 1995] and from the links that can be found in Section 4.2.

1.1.1 Basic definitions and properties

Definition 1.1. Let (X, d) be a metric space and (X, τd) be the topological space induced
by d. Then for any topological space which is homeomorphic to such a (X, τd), we say it is
metrizable.

Definition 1.2. Let T = (T, τ) be a topological space and H ⊆ T be a subset. Then H is
dense in T if and only if the intersection of H with every open subset of T is non-empty.

Definition 1.3. A topological space T = (T, τ) is separable if and only if there exists a
countable subset of T which is dense in T .

Definition 1.4. Let T = (T, τ) be a topological space. Then C is an open cover for T if
C ⊂ τ and T ⊆ ∪C where ∪C denotes the union of all elements of C. In this case we say
that T is covered by C. Then T is compact if and only if every open cover for T has a finite
subcover, i.e. a finite set which is also a cover for T .

Proposition 1.5. Let T1 and T2 be topological spaces and let f : T1 → T2 be a continuous
mapping. If T1 is compact then so is its image f(T1) under f. That is, compactness is a
continuous invariant.

Proof. Suppose U is an open cover of f(T1) by open sets in T2. Because f is continuous,
it follows that f−1(U) is open in T1 for all U ∈ U . The set {f−1(U) : U ∈ U} is an open
cover of T1, because for any x ∈ T1, it follows that f(x) must be in some U ∈ U . Because
T1 is compact, it has a finite subcover {f−1(U1), f−1(U2), ..., f−1(Ur)}. It follows that
{U1, U2, ..., Ur} is a finite subcover of f(T1).
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Proposition 1.6. Let T be a compact space and let C be a closed subspace of T . Then C is
compact. That is, the property of being compact is weakly hereditary.

Proof. Let U be an open cover of C. Since C is closed, it follows by definition of closed that
T\C is open in T . So if we add T\C to U , we see that U ∪ T\C is also an open cover of
T . As T is compact, there exists a finite subcover of U ∪ T\C, say V = U1, U2, ..., Ur. This
covers C by the fact that it covers T . If T\C is an element of V , then it can be removed
from V and the rest of V still covers C. Thus, we have a finite subcover of U which covers
C, and hence C is compact.

Proposition 1.7. Let (X, d) be a metric space. If (X, τd)
1 is compact, then it is separable.

Proof. First, we state that given ε > 0 the set {B(x, ε) : x ∈ X} is an open cover for (X, τd).
This is true as the open balls form a basis for the topology of X induced by its metric and it
is clear that X ⊆

⋃
{B(x, ε) : x ∈ X}. Now as X is compact, the given cover has a finite

subcover of the desired form. So there exists a finite set Fε such that {B(x, ε) : x ∈ Fε}
is an open cover of X. This means that for any y ∈ X, there exists a x ∈ Fε such that
d(x, y) < ε. Now repeating the process for each ε = 1

n for n ∈ N we can define the set
F := ∪{F 1

n
: n ∈ N} which is countable because of being a countable union of finite sets.

Lastly we see that F is a dense set by proving that the intersection of F with every open set
O of X is non-empty: for each y ∈ O, since O is open, there exists an integer N such that
B(y, 1

N ) ⊂ O. Now as the collection {B(x, 1
N ) : x ∈ F 1

N
} is a finite cover for X, there is

some x ∈ F 1
N

such that d(x, y) < 1
N . But then trivially x ∈ B(y, 1

N ) ⊂ O, and so O ∩ F is
non-empty. This completes the proof of the claim.

Definition 1.8. Let T1 and T2 be topological spaces. A mapping f : T1 → T2 is a topological
embedding of T1 into T2 if f is an homeomorphism onto its image f(T1). In this case
we say that T1 embeds homeomorphically into T2. We can also state that T2 contains a
homeomorphic copy of T1 (specifically, f(T1)) or that T1 is homeomorphic to a topological
subspace of T2.

Proposition 1.9. Let T1 be a compact space and T2 a topological space. If there exists some
homeomorphism f : T1 → T2, then T2 is a compact space. That, is compactness is a topological
property.

Proof. Let {Oi}i∈I be an open cover for T2. By the continuity of f , the preimages form an
open cover {f−1(Oi)}i∈I for T1. Hence by compactness of T1, there exists a finite subset
F ⊂ I such that {f−1(Oi)}i∈F is still an open cover for T1. Finally, by surjectivity of f it
follows that

T2 = f(T1) = f(∪i∈F f−1(Oi)) = ∪i∈FOi

where we used that images of unions are unions of images. This means that also {Oi}i∈F
is still an open cover for T2, and in particular a finite subcover of the original cover.

1See Definition 1.1
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Definition 1.10. Let T = (T, τ) be a topological space. T is a Hausdorff space or T2 space
if and only if for any two distinct elements x, y ∈ T there exist disjoint open sets U, V ∈ τ
containing x and y respectively.

Proposition 1.11. Let T = (T, τ) be a Hausdorff topological space and let TH = (TH , τH) be
a subspace of T . Then TH is a Hausdorff space. That is, the property of being a Hausdorff
space is hereditary.

Proof. By the definition of topological subspace, we have that ∅ ⊂ TH ⊆ T and that
τH := {U ∩ TH : U ∈ τ}. Now let x, y ∈ TH such that x 6= y. Then as x, y ∈ T we have
that there exist U, V ∈ τ such that x ∈ U, y ∈ V and U ∩ V = ∅. As x, y ∈ TH we have that
x ∈ U ∩ TH , y ∈ V ∩ TH with (U ∩ TH) ∩ (V ∩ TH) = ∅ and so the Hausdorff property is
satisfied in TH .

Proposition 1.12. Let H = (H, τ) be a Hausdorff topological space and let C be a compact
subspace of H. Then C is closed in H.

Proof. Let a ∈ H\C. We are going to prove that there exists an open set Ua such that
a ∈ Ua ⊆ H\C. For any single point x ∈ C, the Hausdorff condition ensures the existence
of disjoint open sets U(x) and V (x) containing a and x respectively. Suppose there were
only a finite number of points x1, x2, ..., xr in C. Then we could take Ua =

⋂r
i=1 U(xi)

and get a ∈ Ua ⊆ H\C. Now suppose C is not finite. The set {V (x) : x ∈ C} is an open
cover for C. As C is compact, it has a finite subcover, say {V (x1), V (x2), ..., V (xr)}. Let
Ua =

⋂r
i=1 U(xi). Then Ua is open because it is a finite intersection of open sets. Also,

a ∈ Ua because a ∈ U(xi) for each i = 1, 2, ..., r. Finally, if b ∈ Ua then for any i = 1, 2, ..., r

we have b ∈ U(xi). Because C ⊆
⋃r
i=1 V (xi) with b 6∈ V (xi), then b 6∈ C. Thus: Ua ⊆ H\C.

Then H\C is open and it follows that C is closed.

Lemma 1.13. Let (X, d) be a metric space. Then d̂(x, y) := min{d(x, y), 1} is an equivalent
metric for X. That is, the topologies induced by d and d̂ on X are the same.

Proof. First we see that for any arbitrary element x ∈ X then given ε > 0 there exists some
δ > 0 such that Bd(x, δ) ⊆ Bd̂(x, ε). By taking δ := ε, we have that y ∈ Bd(x, δ) means that
d(x, y) < ε. Then, as d̂(x, y) ≤ d(x, y) we have y ∈ Bd̂(x, ε).

Reciprocally, we will prove that for any arbitrary element x ∈ X then given ε > 0 there
exists some δ > 0 such that Bd̂(x, δ) ⊆ Bd(x, ε). If ε ≤ 1, then by choosing δ := ε, we
have that y ∈ Bd̂(x, δ) means that d̂(x, y) < ε. Now by definition must be d̂(x, y) = d(x, y)

and consequently y ∈ Bd(x, ε). On the other hand, if ε > 1 then we take δ := 1 so that
y ∈ Bd̂(x, δ) means d̂(x, y) < 1 so again by definition must be d̂(x, y) = d(x, y). Therefore
d(x, y) < 1 ≤ ε and y ∈ Bd(x, ε).
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1.1.2 The product topology

Definition 1.14. Let {Xi : i ∈ I} be an indexed family of topological spaces where I is an
arbitrary index set and let X be its cartesian product: X :=

∏
i∈I Xi. The product topology,

sometimes called the Tychonoff topology, on X is the topology that has as a basis the set of
all
∏
i∈I Ui where Ui ⊂ Xi is open for every i ∈ I and the set {i ∈ I : Ui 6= Xi} is finite.

The cartesian product X endowed with the product topology is called the product space.

Lemma 1.15. Let {Xi : i ∈ I} be an indexed family of Hausdorff topological spaces where I
is an arbitrary index set and let X :=

∏
i∈I Xi be its product space. Then X is a Hausdorff

space.

Proof. If x and y are distinct points of X, then there is at least one i0 ∈ I on which they
differ, meaning that xi0 6= yi0 . Xi0 is Hausdorff, so there are open sets Ui0 and Vi0 in Xi0

such that x ∈ Ui0 , y ∈ Vi0 , and Ui0 ∩ Vi0 = ∅. Now let Ui = Vi = Xi for each i ∈ I\{i0}, let
U =

∏
i∈I Ui, and let V =

∏
i∈I Vi; then U and V are basic open sets in X, x ∈ U , y ∈ V ,

and U ∩ V = ∅ (to see this, note that if z ∈ U ∩ V , then it would be zi0 ∈ Ui0 ∩ Vi0 = ∅, so
no such z can exist). Thus, X is Hausdorff.

Theorem 1.16 (Tychonoff’s Theorem). Let {(Xi, τi) : i ∈ I} be an indexed family of compact
topological spaces where I is an arbitrary index set and let us consider its product space X.
Then X is compact. That is, the arbitrary product of compact spaces is compact.

Proof. In [Wildman, 2010], an interesting proof of the theorem using Alexander Subbase
theorem can be found.

Proposition 1.17. Let {(Xn, dn) : n ∈ N} be a countable collection of metric spaces and let
us consider its product space X as aforementioned. Define

d : X ×X → R

(x, y) 7→
∞∑
n=1

dn(xn, yn)

2n

for every x = (xn)∞n=1 and y = (yn)∞n=1 in X. Then d is a metric on X whose induced topology
is equivalent to the product topology on X.
That is, the countable product of metric spaces is metrizable.

Proof. First, let O be a basic open product set, so O =
∏
nOn, all On are open in Xn and

where we have a finite set F ⊂ N such that n /∈ F if and only if Xn = On. We want to show
that it is open in the d-topology (topology induced by the metric d), so pick x ∈ O, and let
us find r > 0 such that Bd(x, r) ⊂ O. This would prove that all basic product open sets are
d-open, and thus all product open sets are d-open.

Now, for every n ∈ F , we have that xn ∈ On, which is a (non-trivial) open subset in
Xn, so we have some rn > 0 such that Bdn(xn, rn) ⊂ On, from the fact that the topology
on Xn is induced by the metric dn. As we have finitely many rn to consider, we can find
some 0 < r < 1 such that r ≤ rn

2n for all n ∈ F .

14



The claim now is that Bd(x, r) ⊂ O. To see this, take any y ∈ Bd(x, r) with d(x, y) < r.
For n ∈ F , we know that dn(xn,yn)

2n ≤ d(x, y) < r ≤ rn
2n , which implies that for such n we

have that dn(xn, yn) < rn, and so yn ∈ Bdn(xn, rn) ⊂ On. Hence, for all n ∈ F , yn ∈ On,
and as the rest of Ons equal Xn by the definition of O, we have that indeed y ∈ O, and as
y was arbitrary, Bd(x, r) ⊂ O, as required.

We now start with an open ball Bd(x, r), a basic open subset of the d-topology, for some
arbitrary x ∈ X and r > 0, and try to find a basic open subset O in the product topology
such that x ∈ O ⊂ Bd(x, r). This would then show that any d-open ball is open in the
product topology and would prove the other inclusion we need: every d-open set is product
open. The intuition is that the tail of a series like the one that defines d is essentially
irrelevant (we can get it as small as we like) and this corresponds to the idea that basic
open subsets only depend on finitely many non-trivial open sets. So we first pick N ∈ N
such that 1

2N
< r

2 where N defines our tail. For 1 ≤ k ≤ N we consider the open balls
Ok = Bdk(xk,

r
2N ), and we set Ok = Xk for k ≥ N + 1.

The claim now is that O =
∏
k Ok ⊂ Bd(x, r), as required. Note that O is indeed a basic

open subset in the product topology on X and x ∈ O.
To verify the latter claim, we simply estimate: let y be in O, then for k ≤ N , dk(xk, yk) <

r
2N , so

N∑
k=1

dk(xk, yk)

2k
≤

N∑
k=1

dk(xk, yk) < N · r

2N
=
r

2
,

while

∞∑
k=N+1

dk(xk, yk)

2k
≤

∞∑
k=N+1

1

2k
=

1

2N
<
r

2
.2

Putting it together, we indeed get that for y ∈ O we have d(x, y) < r
2 + r

2 = r, as
required.

1.1.3 A result on topological embeddings

Proposition 1.18. Let T1 = (T1, τ1) and T2 = (T2, τ2) be topological spaces and let f : T1 →
T2 be a bijection. Then f is open if and only if f−1 is continuous.

Proof. First, note that g := f−1 is a bijection with g−1 = f . Now let f be open. Then,
by definition of an open mapping, for all H ∈ τ1, f(H) ∈ τ2. But f = g−1 so for all
H ∈ τ1, g

−1(H) ∈ τ2 which is exactly the definition for g to be continuous.
The argument works the other way: let now g be continuous. Then by definition of

continuous mapping for all H ∈ τ1, g
−1(H) ∈ τ2. But g−1 = f so for all H ∈ τ1, f(H) ∈ τ2

which is exactly the definition for f to be open.

Proposition 1.19. Let T1 = (T1, τ1) and T2 = (T2, τ2) be topological spaces and let f : T1 →
T2 be a bijection. Then f is open if and only if f is closed.
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Proof. Suppose f is an open mapping. From the definition of open mapping, for all
H ∈ τ1, f(H) ∈ τ2. As f is a bijection, f(T1\H) = f(T1)\f(H) = T2\f(H). By definition
of closed set, T1\H is closed in T1 and, as f is an open mapping, f(T1\H) = T2\f(H) is
closed in T2. Hence by definition f is a closed mapping. The analogous argument proves
that if f is closed then it is open.

Corollary 1.20. Let T1 = (T1, τ1) and T2 = (T2, τ2) be topological spaces and let f : T1 → T2

be a bijection. Then f is closed if and only if f−1 is continuous.

Proof. This is an elementary consequence of Propositions 1.18 and 1.19.

Theorem 1.21. Let T1 be a compact space, T2 be a Hausdorff space and let f : T1 → T2 be a
continuous injection. Then f determines a homeomorphism from T1 to f(T1). That is, f is a
topological embedding of T1 into T2.

Proof. We first show that f : T1 → T2 is closed. We are to show that if V is closed in T1,
then f(V ) is closed in T2. Suppose V is closed in T1. Then, since T1 is compact, we know
V is compact (see Proposition 1.6). So f(V ) is compact from Proposition 1.5. Since T2 is
Hausdorff, f(V ) closed by Proposition 1.12. Thus, applying Corollary 1.20, it follows that
f is an homeomorphism onto its image.

Corollary 1.22. If K is a compact set for some topology τ , and τ ′ is any Hausdorff topology
on K which is weaker than τ (that is, τ ′ ⊆ τ), then τ and τ ′ coincide.

Proof. Suppose A is a τ -closed subset of K. We know that the mapping idK : (K, τ) →
(K, τ ′) is a trivial continuous injection. Then, by Theorem 1.6 and Corollary 1.20, A is
τ ′-closed. This means τ ⊆ τ ′ and consequently both topologies coincide.

1.1.4 The Cantor set

Definition 1.23. The Cantor set C consists of all those real numbers x in [0, 1] so that when
we write x in ternary form x =

∑∞
i=1 ai/3

i, then none of the numbers a1, a2, ... equals 1

(i.e., either ai = 0 or ai = 2).
As C is a topological subspace of R, the topology of the Cantor set is its relative topology,
that is, the one induced by the usual topology on C.

Proposition 1.24. The Cantor set3 C is homeomorphic to ∆ := {0, 1}N.

Proof. Let us establish a homeomorphism

f : {0, 1}N → C

(xn)∞n=1 7→
∞∑
n=1

2xn
3n

First, since it has a converging geometric series as a majorant, the series converges and
even uniformly. By the definition of Cantor set given in the first chapter, it is clear that the
image lives in C.

3From now on, we refer to C as the Cantor middle third set and the Cantor set will be regarded as ∆.
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From Definition 1.23, C is a metrizable space for the usual metric in R. Now as the set
{0, 1} is a metric space for the discrete metric (d(x, y) = 1 if x 6= y and d(x, y) = 0 other-
wise), by Proposition 1.17 then {0, 1}N is also a metric space for d(x, y) =

∑∞
n=1

|xn−yn|
2n

for every x = (xn)∞n=1 and y = (yn)∞n=1.
A mapping between metric spaces f : (X, dX)→ (Y, dY ) is continuous if for every ε > 0

there exists δ > 0 such that dY (f(x), f(y)) < ε whenever dX(x, y) < δ. Now given some
ε > 0, if we choose δ := ε we obtain

|
∞∑
n=1

2xn
3n
−
∞∑
n=1

2yn
3n
| = |

∞∑
n=1

2(xn − yn)

3n
| ≤

∞∑
n=1

2|xn − yn|
3n

< 2 · ε ·
∞∑
n=1

1

3n
= 2 · ε · 1

2
= ε

which proves continuity. Injectivity can be concluded from the fact that |f(x)− f(y)| > 0

if x 6= y. Surjectivity is straightforward from the definition since for every element of the
Cantor set it can be given such a series by choosing every xi wisely (∀y ∈ C, choose xi = 0

if at the i-th step y is located on the left part of the i-th step interval being split to thirds,
and xi = 1 if on the right).

Lastly, recalling Proposition 1.11 and the fact that R is Hausdorff, C is Hausdorff
and by Theorem 1.16 and the fact that {0, 1} is compact (note that every finite set is
trivially compact) then {0, 1}N must be compact. As a consequence from Corollary 1.21,
we conclude that f is a homeomorphism.

Proposition 1.25. The Cantor set ∆ can be homeomorphically embedded into the real interval
[0, 1].

Proof. Let us use the homeomorphism f : {0, 1}N → C ⊆ [0, 1] which we know is injective
(see Proposition 1.24).

The following proof was extracted from [Simón Pinero, 2017] in order to be used
below.

Lemma 1.26. The cartesian product N× N is countable.

Proof. For this we will use the fact that given two sets A,B then |A| ≤ |B| if there exists
some injective mapping f : A→ B.
First, we define

f : N −→ N× N
n 7−→ (n, 0)

which is trivially injective. Thus, |N| ≤ |N× N|.
Secondly, let us display an injective mapping ϕ : N×N→ N. To simplify the arguments

we will assume N = {1, 2, 3, ...}, without 0. The idea is to order the pairs in the lexicographic
order and then count them "diagonally". Note that in each diagonal from (1, n) to (n, 1)

there are exactly n pairs whose coordinates add up to n + 1, and before reaching that
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diagonal
∑n−1

i=1 i pairs have been already counted. Then when finishing the diagonal we
will have counted

n−1∑
i=1

i+ n =
n∑
i=1

i

pairs. If we call S(n) to the sum of the n first natural numbers, it is obvious that (1, n) 7→
S(n− 1) + 1, (2, n− 1) 7→ S(n− 1) + 2 and thus (n, 1) 7→ S(n− 1) + n = S(n).

This way, the correspondence remains as follows. If an arbitrary element (i, j) is
considered, then it belongs to the diagonal of (1, i + j − 1) 7→ S(i + j − 2) + 1. Then
(i, j) 7→ S(i+ j − 2) + i, and applying the widely known formula of the sum we obtain

ϕ(i, j) =
(i+ j − 1)(i+ j − 2)

2
+ i.

Because of the way we have defined this mapping we know it will be injective. Hence,
|N× N| ≤ |N| which finally gives |N| = |N× N| and the fact that the cartesian product is
countable.

Proposition 1.27. There exists a continuous surjection from the Cantor set ∆ into the real
interval [0, 1]N. That is, [0, 1]N is a continuous image of ∆.

Proof. First let us define the continuous surjection

f : {0, 1}N → [0, 1]

(xn)∞n=1 7→
∞∑
n=1

xn
2n

which maps ∆ continuously onto [0, 1]. As in Proposition 1.24, we will prove continuity
regarding the spaces as metric spaces with their metrics already described. Given some
ε > 0, if we choose δ := ε we obtain

|
∞∑
n=1

xn
2n
−
∞∑
n=1

yn
2n
| = |

∞∑
n=1

xn − yn
2n

| ≤
∞∑
n=1

|xn − yn|
2n

< ε ·
∞∑
n=1

1

2n
= ε · 1 = ε

which proves that f is continuous. Naturally, the functions displayed is a surjection as the
elements x ∈ [0, 1] can be we written in their binary form x =

∑∞
n=1 an/2

n.
Now recalling Lemma 1.26, we can state that {0, 1}N ∼= {0, 1}N×N. Hence, combining both
functions, the mapping f̂ : {0, 1}N → [0, 1]N given by f̂(x) := f(x)∞n=1 for every x = (xn)∞n=1

is a continuous surjection that fits the statement.

Definition 1.28. A closed set F in a topological space X is a retract of X if there is a
continuous surjection f : X → F such that f(x) = x for x ∈ F .

Lemma 1.29. Let (an)∞n=1 be a sequence in a space X and a ∈ X such that for every
subsequence of (an)∞n=1 there is a subsequence that converges to a. Then (an)∞n=1 converges to
a.
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Proof. Suppose it does not converge to a. Then, we can find a neighbourhood of a and a
subsequence of (an)∞n=1 such that it never enters the neighbourhood. But this subsequence
can have no subsequence converging to a, a contradiction.

Lemma 1.30. Every non-empty closed subset C of the Cantor set ∆ is a retract of it.

Proof. Let us consider the metric d(x, y) :=
∑∞

n=1
|xn−yn|

3n in ∆, regarding ∆ as a subset of
elements in ternary form of R this time. Note that if we have d(x, y) = d(x, z) then it must
be |x − y| = |x − z| in the real line and hence y = z or x = y+z

2 . By construction of the
Cantor set 4, we know that it is absurd that any x ∈ ∆ is the midpoint of two points in the
set. Thus, must be y = z.

Now for any fixed element x ∈ ∆ we know that the function that assigns its distance to
any element in C, d(x, ·) : C → R, is defined in a compact domain as C is closed in ∆ (see
Proposition 1.6) and is continuous by the triangle inequality, |d(x, y)− d(x, z)| ≤ d(y, z),
so it must attain a minimum in C.

Then we can define the function r : ∆→ C as d(x, r(x)) = d(x,C) = inf{d(x, y) : y ∈
C}, that is, r(x) is the closest point in C for any x ∈ ∆, which exists and is unique by our
previous observations.

Clearly, r is continuous. Let xn 7→ x in ∆ and let us take an arbitrary subsequence
r(xnk

) of r(xn). As C is compact, then it has a subsequence r(xnki
) which is convergent to

some y ∈ C. Lastly, as the function d : ∆×∆→ R is continuous by the triangle inequality,
|d(xn, yn) − d(x, y)| ≤ d(xn, x) + d(yn, y), and we know that d(xnki

, r(xnki
)) ≤ d(xnki

, z)

for any z ∈ C, taking limits we have that d(x, y) ≤ d(x, z) and so it must be r(x) = y.
Hence, by Lemma 1.29, r(xn) converges to r(x) and then r is a retract of the Cantor set

onto C.

Proposition 1.31. Every compact metrizable space X is homeomorphic to a compact5 subset
of [0, 1]N.

Proof. Being compact and metrizable, X contains a countable dense set, (xn)∞n=1, as it
is separable by Proposition 1.7. Let d be a metric on K inducing its topology. Without
loss of generality we can assume that 0 ≤ d ≤ 1 (see Lemma 1.13). Now we define
f(x) = (d(x, xn))n∈N.

Clearly, f is continuous since every coordinate mapping x 7→ d(x, xn) is continuous
for each n. Check that given ε > 0 we can take δ := ε as whenever d(x, y) < δ then
|d(x, xn)− d(y, xn)| ≤ |d(x, y)| < ε by using the triangular inequality.

Now we see that f must be injective because if x and y are two different points in
X then there exists some xn such that d(x, xn) 6= d(y, xn) and, therefore, f(x) and f(y)

will differ in the nth-coordinate. For this note that if d(x, xn) = d(y, xn) for every natural
number n ∈ N, then it is d(x, y) ≤ d(x, xn) + d(y, xn) = 2 · d(x, xn) and as the set (xn)∞n=1

4Although Cantor himself defined the set in a general, abstract way, the most common modern construction
is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process
with the remaining shorter segments.

5Note that must be compact because of Proposition 1.9.
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is dense we can always find some xn such that d(x, xn) < ε for any given ε > 0. Hence,
making it tend to zero we would have d(x, y) = 0, but this can only happen if x = y.

Since X is compact and [0, 1]N is Hausdorff (by using Lemma 1.15, Proposition 1.11
and the facts that R is Hausdorff and [0, 1] is a subset of R) we can apply Corollary 1.21
and hence f maps K homeomorphically into its image.

Proposition 1.32. For every nonempty compact metrizable space K, there exists a continuous
surjection from the Cantor set ∆ onto K. That is, K is a continuous image of ∆.

Proof. Since every compact metrizable space K is homeomorphic to a compact subset K̄
of [0, 1]N by Proposition 1.31, there must exist some homemorphism h : K → K̄ ⊂ [0, 1]N.
Clearly, its inverse h−1 : K̄ → K is continuous and surjective.

Now we consider the continuous surjection f : ∆→ [0, 1]N from Proposition 1.27 and
define the set F := {x ∈ ∆ : f(x) ∈ K̄}. Note that the restriction f |F is continuous and
surjective on its image, which is precisely K̄.

As F is closed in ∆ because of being the preimage by a continuous mapping f of a
closed set K̄, by Lemma 1.30 there is a continuous surjection r : ∆→ F .

The scheme of the composition that completes our proof can be seen in the following dia-
gram.

∆ F K̄ K
r f |F h−1

This is obviously a continuous surjection from the Cantor set ∆ into K, as it is a
composition of continuous surjections.

1.2 Analysis

The following analytical definitions and results are needed for Chapter 3 and can be found
in [Albiac and Kalton, 2016] and [Cascales et al., 2012].

1.2.1 Basic definitions and properties

Definition 1.33. Let X and Y be normed linear spaces. A linear operator T : X → Y is an
isometry (or isometric embedding) if for all x ∈ X we have that ‖T (x)‖ = ‖x‖. In this case
we say that X embeds isometrically into Y . We can also state that Y contains an isometric
copy of X (specifically, T (X)) or that X is isometric to a normed subspace of Y .

Definition 1.34. Let X and Y be normed linear spaces. A linear operator T : X → Y is an
embedding of X into Y if T is an isomorphism onto its image T (X). In this case we say
that X embeds in Y or that Y contains an isomorphic copy of X (specifically, T (X)).

Lemma 1.35. Let X and Y be normed linear spaces. If T : X → Y is an isometry, then T is
injective. Thus, T is an embedding of X into Y .

20



Proof. Suppose that x, y ∈ X and T (x) = T (y), then T (x)− T (y) = 0. So as T is a linear
operator 0 = ‖T (x)− T (y)‖ = ‖T (x− y)‖ = ‖x− y‖. But this happens if and only if
x− y = 0, so x = y. Hence, T is injective and an isomorphism onto its image T (X) so the
result follows.

Definition 1.36. Let X be a normed vector space. The (topological) dual space of X,
denoted as X∗, is the Banach space L(X,R) where L(X,R) consists of all linear operators
from X to R with the operator norm defined as ‖T‖op := sup{‖T (x)‖ : ‖x‖ = 1} for such
an operator T .

Definition 1.37. Let X be a normed vector space and let X∗ be its dual space. The positive
part of a subset S ⊆ X∗ is the set {x∗ ∈ S : x∗(x) ≥ 0,∀x ≥ 0}.

Definition 1.38. Let X be a normed vector space. The weak topology of X, usually denoted
w-topology or σ(X,X∗)-topology, is the weakest topology on X such that each x∗ ∈ X∗ is
continuous.

Note that a base of neighborhoods of x0 ∈ X is given by the sets of the form

Vε(x0;x∗1, ..., x
∗
n) = {x ∈ X : |x∗i (x− x0)| < ε, i = 1, ..., n},

where ε > 0 and {x∗1, ..., x∗n} is any finite subset of X∗.
One can also give an alternative description of the weak topology via the notion of

convergence: take a sequence (xn)n∈N in X; we will say that (xn)n∈N converges weakly to
x0 ∈ X, and we write xn

w−→ x0, if for each x∗ ∈ X∗, x∗(xn)→ x∗(x0).

Definition 1.39. Let X be a normed vector space and let X∗ be its dual space. Let
j : X → X∗∗ be the natural embedding of a Banach space in its second dual, given by
j(x)(x∗) = x∗(x). As usual we identify X with j(X) ⊂ X∗∗.

Observation 1.40. Notice also that when we identify X with j(X) and consider X as
a subspace of X∗∗ this is not simply an identification of sets; actually (X,σ(X,X∗)) →
j(X,σ(X∗∗, X∗)) is a linear homeomorphism.

Definition 1.41. Let X be a normed vector space and let X∗ be its dual space. The weak∗

topology of X, usually denoted w∗-topology or σ(X∗, X)-topology, is the weakest topology
on X∗ by X, i.e. it is the weakest topology on X∗ that makes all linear functionals in
X ⊂ X∗∗ continuous.

Note that a base of neighborhoods of x∗0 ∈ X∗ is given by the sets of the form

Wε(x
∗
0;x1, ..., xn) = {x∗ ∈ X∗ : |x∗(xi)− x∗0(xi)| < ε, i = 1, ..., n},

for any ε > 0 and {x1, ..., xn} any finite subset of X.
As before, we can equivalently describe the weak∗ topology of a dual space in terms of

convergence: we say that a sequence (x∗n)n∈N in X∗ converges weakly∗ to x∗0 ∈ X∗, and

we write x∗n
w∗−−→ x∗0, if for each x ∈ X, x∗n(x)→ x∗0(x).

Of course, the weak∗ topology of X∗ is no bigger than its weak topology and, in fact,
σ(X∗, X) = σ(X∗, X∗∗) if and only if j(X) = X∗∗ (that is, if and only if X is reflexive).
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1.2.2 Hahn-Banach theorem

Theorem 1.42 (Hahn-Banach theorem). Let (X, ‖·‖) a normed linear space over R, Y ⊂ X
a linear subspace, and y∗ : Y → R a bounded linear operator (y∗ ∈ Y ∗). Then there exists
some x∗ : X → R bounded linear operator (x∗ ∈ X∗) such that:

(i) (extension) x∗(y) = y∗(y) ∀y ∈ Y (x∗|Y = y∗)

(ii) (norm-preserving) ‖x∗‖ = ‖y∗‖

In other words, the restriction operator φ : x∗ ∈ X∗ 7→ x∗|Y ∈ Y ∗ is suprajective and every
y∗ ∈ Y ∗ is the restriction of some x∗ ∈ X∗ that preserves the norm ‖x∗‖ = ‖y∗‖.

Proof. See [Cascales et al., 2012, 3.1.7].

Corollary 1.43. Let (X, ‖·‖) be a normed linear space over R.

(i) If x ∈ X\{0} then there exists some x∗ ∈ X∗ with ‖x∗‖ = 1 such that ‖x‖ = x∗(x)

(ii) For every x ∈ X

‖x‖ = sup{|x∗(x)| : ‖x∗‖ = 1} = max{|x∗(x)| : ‖x∗‖ = 1}

Proof. For (i), we apply the Hahn-Banach Theorem to Y := Rx and y∗(ax) = a ‖x‖ that
fulfills |y∗(ax)| = ‖ax‖ hence ‖y∗‖ = 1.

(ii) is a consequence of |x∗(x)| ≤ ‖x‖ ‖x∗‖.
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CHAPTER 2
Banach lattices

2.1 Basic definitions and properties

In this section the reader is introduced to some basic definitions and properties concerning
vector and Banach lattices. Most of the content here exposed is from [Wickstead, 2007],
whereas a great quantity of the following examples were found in [Meyer-Nieberg, 1991]
and [Schaefer, 1974].

2.1.1 Introduction to vector lattices

Definition 2.1. An order on a non-empty set M is a relation “ ≤ ” such that

(i) x ≤ x ∀x ∈M (reflexive)

(ii) x ≤ y and y ≤ x imply that x = y ∀x, y ∈M (antisymmetric)

(iii) x ≤ y and y ≤ z imply that x ≤ z ∀x, y, z ∈M (transitive)

We use y ≥ x as a synonym for x ≤ y, and x < y for x ≤ y but x 6= y. Similarly, we write
y > x for x < y.

Definition 2.2. Let A be a non-empty subset of M , then

(i) x ∈M is an upper bound for A (resp. lower bound) if y ≤ x (resp. x ≤ y) ∀y ∈ A. In
this case we say that A is bounded above (resp. bounded below).

(ii) An upper bound (resp. lower bound) x for A is the supremum (resp. infimum) of
A if for any other upper bound (resp. lower bound) y for A we have x ≤ y (resp.
y ≤ x). The supremum of A, when it exists1, is denoted by sup(A), sup{a : a ∈ A},∨
{a : a ∈ A}, or

∨
a∈A a (analogous for the infimum).

(iii) If A is bounded above and bounded below, we say that A is order bounded.

1See Remark 2.10.
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(iv) A is an order interval if it is of the form [x, y] := {m ∈ M : x ≤ m ≤ y} for some
x, y ∈M .

Definition 2.3. A lattice is a non-empty set L with an order “ ≤ ” such that for every pair
of elements x, y ∈ L, the set {x, y} has both a supremum (x∨ y) and an infimum (x∧ y) in
L.

Example 2.4. N with the order given by the divisibility (x ≤ y ⇐⇒ x | y) is a lattice
where x ∨ y = mcm(x, y) and x ∧ y = mcd(x, y) for every x, y ∈ N.

Example 2.5. R with the usual order is a lattice where x ∨ y = max(x, y) and x ∧ y =

min(x, y) for every x, y ∈ R.

Example 2.6. Let M be a non-empty space and let (L,≤) be a lattice. The set LM of all
mappings of the form f : M→ L is lattice under its canonical ordering (f ≤ g ⇐⇒ f(t) ≤
g(t) ∀t ∈ M) where f ∨ g = h with h(t) = f(t) ∨ g(t) and f ∧ g = i with i(t) = f(t) ∧ g(t)

for every f, g ∈ LM.

Example 2.7. Let M be the set of all subsets of a certain set X, ordered with inclusion
(A ≤ B ⇐⇒ A ⊆ B). Then M is a lattice where A ∨B = A ∪B and A ∧B = A ∩B for
every A,B ∈M .

Definition 2.8. A sublattice A of a lattice L is simply a vector subspace that is also a lattice.
That is, x, y ∈ A implies that x ∨ y, x ∧ y ∈ A, where these lattice operations are computed
in L.

Example 2.9. Let X be an infinite set and N be the collection of all subsets of X such that
they are finite or their complement is finite, again ordered by inclusion. After some easy
computation it is easy to check that both A ∪B and A ∩B belong to N and hence N is a
lattice. In particular, N is a sublattice of the collection of all subsets of X.

Remark 2.10. Let X and N defined as in the previous example and Y ⊂ X such that Y /∈ N .
Then B := {{x} : x ∈ Y } is a subset of N which does not have a supremum in N (note that
sup(B) = Y ).

Example 2.11. Let X be an infinite set and let L be the set of all finite subsets of X such
that their cardinality is even. Then L is an ordered set (ordered with inclusion) but fails to
be a lattice (A ∧B = A ∩B /∈ L in general).

Definition 2.12. A linearly ordered set (or linear order) is a non-empty set L with an order
“ ≤ ” with the property that for any x, y ∈ L, either x ≤ y or y ≤ x.

Remark 2.13. Note that Example 2.5 shows a linearly ordered set.

Definition 2.14. A map T : L1 −→ L2 between two lattices L1 and L2 is said to be a lattice
homomorphism if it preserves the lattice operations:

T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every x, y ∈ L1.

If T is also bijective, we say that T is a lattice isomorphism.
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Definition 2.15. A real vector space E with an order “ ≤ ” is a vector lattice (or Riesz
space) if it is a lattice and also an ordered vector space (guarantees compatibility for the
order and the vector space):

(i) x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ E,

(ii) 0 ≤ x implies 0 ≤ tx for all x ∈ E and 0 ≤ t ∈ R.

Example 2.16. The most obvious example of a vector lattice is Rn with all the usual
operations and the usual or standard order in which

(x1, ..., xn) ≤ (y1, ..., yn) ⇐⇒ xk ≤ yk for k = 1, ..., n.

This order makes Rn into a vector lattice where

(xk) ∨ (yk) = (xk ∨ yk) = (max(xk, yk)) and (xk) ∧ (yk) = (xk ∧ yk) = (min(xk, yk)).

Definition 2.17. A vector sublattice of a vector lattice E is simply a vector subspace that is
also a sublattice.

Example 2.18. If M is any set, the space of real-valued functions on X, RM , is a vector
lattice under its canonical ordering and pointwise vector operations. Note that for M = ∅
the usual convention is RM = {0}. Many of the vector lattices occurring in analysis are
vector sublattices of RM .

Example 2.19. Both c0 and c are vector sublattices of `∞ (with pointwise order and vector
operations).

Example 2.20. If {Eα}α∈A is a family of vector lattices, the Cartesian product
∏
αEα is a

vector lattice if the vector and lattice operations are defined coordinatewise. The ordering
in
∏
αEα is called canonical and can be viewed as a generalization of the construction

given in Example 2.6. The direct sum ⊕αEα of the family {Eα}α∈A is understood to be the
vector sublattice of

∏
αEα containing precisely all finitely non-zero elements.

Definition 2.21. The set E+ := {x ∈ E : x ≥ 0} is called the positive cone of E and its
elements are termed positive (rather than non-negative). If x ∈ E+ is not zero, we will
often say that x is strictly positive.

Example 2.22. Let X be a non-empty set and let B(X) be the collection of all bounded
real valued functions defined on X. As this is a vector subspace of RX , it is a simple and
well-known fact that B(X) is ordered by the positive cone

B(X)+ = {f ∈ B(X) : f(t) ≥ 0 for all t ∈ X}.

Thus f ≥ g holds if and only if f − g ∈ B(X)+. Obviously,

(f ∨ g)(t) = max{f(t), g(t)} and (f ∧ g)(t) = min{f(t), g(t)}

for every t ∈ X and f, g ∈ B(X). This shows that B(X) is a vector lattice and, in particular,
a vector sublattice of RX .
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Observation 2.23. In Example 2.42 we will see that when K is compact the subspace
C(K) is a Banach lattice with the norm ‖·‖∞ and in particular a vector sublattice of B(K).

Example 2.24. Let X be an infinite set and let L = P(X). Then

E = span{χA : A ∈ L} = {f : X → R where the image of f is finite} =

{λ1 · 1A1 + ...+ λn · 1An : λi ∈ R arbitrary and A1, ..., An is a partition of X}

is a vector sublattice of B(X).

Example 2.25. Now let X be an infinite set and let L be all finite subsets of X with even
cardinality. Then E = span{χA : A ∈ L} is an ordered vector space (subset of B(X)) but
fails to be a vector lattice as it is not closed for suprema and infima.

Definition 2.26. For any x ∈ E, we define the positive part of x as x+ := x∨0, the negative
part of x as x− := (−x) ∨ 0, and the modulus of x as |x| := x ∨ (−x).

Observation 2.27. Recalling Example 2.16, it is obvious that the positive part, the negative
part and the modulus are given by (xk)

+ = (x+
k ), (xk)

− = (x−k ) and |(xk)| = (|xk|),
respectively.

Definition 2.28. We say that x, y ∈ E are disjoint, x ⊥ y, if |x| ∧ |y| = 0. If A ⊂ E, then
Ad = {y ∈ E : y ⊥ a ∀a ∈ A}.

Lemma 2.29. For all x, y in a vector lattice, we have x+ y = (x ∨ y) + (x ∧ y).

Proof. For any given x and y in a vector lattice, let w = (−y)∨(−x) and v = x∨y. Obviously
we have w = −(x ∧ y). In view of w ≥ −y and w ≥ −x it follows that w + x+ y ≥ x and
w+ x+ y ≥ y. Consequently, w+ x+ y ≥ x∨ y = v, that is, x+ y ≥ x∨ y+ x∧ y for every
x, y.

Multiplying each side by −1, we get −x − y ≤ −(x ∨ y) − (x ∧ y) = (−x) ∨ (−y) +

(−x) ∧ (−y) for every −x,−y. Equivalently, x+ y ≤ x ∨ y + x ∧ y for every x, y.

Lemma 2.30. Let x1 and x2 be two positive disjoint elements in a vector lattice. Then, if c1

and c2 are two positive real numbers, c1x1 and c2x2 are disjoint.

Proof. First, note that any positive element is equal to its modulus. Now we know that

0 ≤ c1x1 ∧ c2x2 ≤ [(c1 ∨ c2)x1] ∧ [(c1 ∨ c2)x2] = (c1 ∨ c2)(x1 ∧ x2) = (c1 ∨ c2) · 0 = 0

hence c1x1 ∧ c2x2 = 0 as we wanted to prove.

Lemma 2.31. Let x1, x2, ..., xn be positive pairwise disjoint elements in a vector lattice. Then,
if c1, c2, ..., cn are positive real numbers, we have

∑n
i=1 cixi =

∨n
i=1 cixi.
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Proof. We will prove it using induction on the quantity n.
For n = 2, we have

c1x1 + c2x2 = (c1x1 ∨ c2x2) + (c1x1 ∧ c2x2) = c1x1 ∨ c2x2

by Lemmas 2.30 and 2.29.
Now let us suppose that the result holds for some n ≥ 2. Then we have

n+1∑
i=1

cixi =
n∑
i=1

cixi + cn+1xn+1 =
n∨
i=1

cixi + cn+1xn+1 =
n∨
i=1

cixi ∨ cn+1xn+1 =
n+1∨
i=1

cixi.

Where we used Lemma 2.29 and the fact that
∨n
i=1 cixi and cn+1xn+1 are positive and

disjoint by Lemma 2.30, as

n∨
i=1

cixi ∧ cn+1xn+1 = (c1x1 ∧ cn+1xn+1) ∨ ... ∨ (cnxn ∧ cn+1xn+1) = 0 ∨ ... ∨ 0 = 0.

Proposition 2.32. Let x1, x2, ..., xn be positive pairwise disjoint elements in a vector lattice.
Then, if c1, c2, ..., cn, d1, d2, ..., dn are positive real numbers and x =

∑n
i=1 cixi and y =∑n

i=1 dixi, we have

x ∨ y =
n∑
i=1

(ci ∨ di)xi and x ∧ y =
n∑
i=1

(ci ∧ di)xi.

Proof. By Lemma 2.31, it is

x ∨ y =

(
n∨
i=1

cixi

)
∨

(
n∨
i=1

dixi

)
= (c1x1 ∨ d1x1) ∨ ... ∨ (cnxn ∨ dnxn) =

(c1 ∨ d1)x1 ∨ ... ∨ (cn ∨ dn)xn =
n∑
i=1

(ci ∨ di)xi.

Hence, by Lemma 2.29, we also have

x ∧ y = x+ y − x ∨ y =
n∑
i=1

(ci + di − ci ∨ di)xi =
n∑
i=1

(ci ∧ di)xi.

Lemma 2.33. For all x, y, z in a vector lattice, we have (x ∨ y) + z = (x+ z) ∨ (y + z).

Proof. First, (x ∨ y) + z ≥ x+ z and (x ∨ y) + z ≥ y + z, so it is obvious that (x ∨ y) + z ≥
(x+ z) ∨ (y + z).

Now let us assume that (x∨y)+z > (x+z)∨(y+z). Then there must be some element w′

such that (x∨y)+z ≥ w′ = w+z ≥ (x+z)∨(y+z). In particular, (x∨y)+z ≥ w+z ≥ x+z

and (x∨ y) + z ≥ w+ z ≥ y+ z so this means there exists some w such that x∨ y ≥ w ≥ x
and x ∨ y ≥ w ≥ y which is absurd by definition of supremum.
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Proposition 2.34. Let x1, x2, ..., xn be positive pairwise disjoint elements in a vector lattice.
Then, for some c1, c2, ..., cn, d1, d2, ..., dn ∈ R, if x =

∑n
i=1 cixi and y =

∑n
i=1 dixi, we have

x ∨ y =
n∑
i=1

(ci ∨ di)xi and x ∧ y =
n∑
i=1

(ci ∧ di)xi.

Proof. Let us take some big enough α ∈ R such that ci+α, di+α > 0 for every i ∈ {1, ..., n}.
Then, as

x =
n∑
i=1

cixi =
n∑
i=1

(ci + α)xi −
n∑
i=1

αxi and y =
n∑
i=1

dixi =
n∑
i=1

(di + α)xi −
n∑
i=1

αxi,

by Proposition 2.32 and Lemma 2.33 we have

x ∨ y =

(
n∑
i=1

(ci + α)xi

)∨(
n∑
i=1

(di + α)xi

)
−

n∑
i=1

αxi =(
n∑
i=1

[(ci + α) ∨ (di + α)]xi

)
−

n∑
i=1

αxi =

(
n∑
i=1

(ci ∨ di) + αxi

)
−

n∑
i=1

αxi =

n∑
i=1

(ci ∨ di)xi.

Hence, by Lemma 2.29, we also have

x ∧ y = x+ y − x ∨ y =
n∑
i=1

(ci + di − ci ∨ di)xi =
n∑
i=1

(ci ∧ di)xi.

Corollary 2.35. Let x1, x2, ..., xn be positive pairwise disjoint elements in a vector lattice.
Then, for some c1, c2, ..., cn ∈ R, if x =

∑n
i=1 cixi, we have

|x| =
n∑
i=1

|ci| · xi

Proof. It is a consequence of Proposition 2.34 where y = −x.

Definition 2.36. A map T : E1 −→ E2 between two vector lattices E1 and E2 is said to be
a vector lattice homomorphism if it is linear and preserves the lattice operations:

T (αx+ βy) = αT (x) + βT (y) for every x, y ∈ E1, α, β ∈ R,

T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every x, y ∈ E1.

If T is also bijective, we will say that T is a vector lattice isomorphism.
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2.1.2 Introduction to Banach lattices

Definition 2.37. A Banach lattice is a vector lattice together with a norm that is also a
Banach space in which |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ (i.e. ‖·‖ is a lattice norm).

Definition 2.38. A Banach sublattice of a Banach lattice is simply a vector subspace which
is also a sublattice and closed under the norm of the Banach lattice. In particular, a Banach
sublattice is clearly a Banach lattice.

Lemma 2.39. Let E be a Banach lattice. For any x ∈ E it is ‖x‖ = ‖ |x| ‖.

Proof. It is a consequence of the fact that |x| = | |x| | and that in a Banach lattice (|x| ≤
|y| =⇒ ‖x‖ ≤ ‖y‖) holds.

Definition 2.40. The Banach space dual E∗ of a Banach lattice E is a Banach lattice with
respect to the order given by

x∗ ≥ 0 if and only if x∗(x) ≥ 0 for every x ≥ 0.

All elements that satisfy the inequality above are called positive.
The infimum ∧ and the supremum ∨ of two elements x∗, y∗ ∈ E∗ are given by

(x∗ ∧ y∗)(x) = inf{x∗(x1) + y∗(x2) : x = x1 + x2, x1, x2 > 0} for every x > 0

(x∗ ∨ y∗)(x) = sup{x∗(x1) + y∗(x2) : x = x1 + x2, x1, x2 > 0} for every x > 0

while the modulus of an element x∗ ∈ E∗ is given by

|x∗|(x) = sup {x∗(y) : |y| ≤ x} for every x > 0.

Example 2.41. `p, c0 and c are Banach lattices with their usual norms ‖·‖p and ‖·‖∞ and
under pointwise order.

Example 2.42. The space of continuous real functions on K, C(K), where K is compact,
is a Banach lattice with the norm ‖·‖∞ and the pointwise order.

Example 2.43. Lp(µ) is a Banach lattice with the norm ‖·‖p and under pointwise almost
everywhere order for p ≥ 1.

Definition 2.44. A map T : X −→ Y between two Banach lattices X and Y is said to be a
Banach lattice homomorphism if it is a bounded linear operator and preserves the lattice
operations.

If T is also bijective and T−1 is a Banach lattice homomorphism, we will say T is a
Banach lattice isomorphism.

If, moreover, T preserves the norm (‖T (x)‖ = ‖x‖ for every x ∈ X), we will say that T
is a Banach lattice isometry.
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2.2 Elementary inequalities and the Archimedean property

Definition 2.45. An elementary inequality in a vector lattice is an inequality or an equality
that involves linear and lattice operations and a finite number of elements of the vector
lattice, which can be true or false.

Example 2.46. The equality x+ (y ∨ z) = (x+ y) ∨ (x+ z) is an elementary inequality.

Definition 2.47. A vector lattice E has the Archimedean property (or is Archimedean) if

nx ≤ y for all n ∈ N and y ∈ E+ implies x ≤ 0.

Example 2.48. Clearly, Rn with the usual order is Archimedean.

Example 2.49. R2 with the lexicographic order given by (x1, x2) ≤ (y1, y2) ⇐⇒ x1 < y1

or x1 = y1 and x2 ≤ y2 fails to have the Archimedean property as n(0, 1) ≤ (1, 0) for all
n ∈ N but (0, 1) � (0, 0).

Example 2.50. Real-valued function spaces defined on non-empty sets X, E = RX ,
ordered with their canonical order and under pointwise vector operations are important
examples of Archimedean vector lattices. E is Archimedean as if nf ≤ g for all n ∈ N then
nf(x) ≤ g(x) for all n ∈ N and for all x ∈ X and from the fact that R is Archimedean
follows that f(x) ≤ 0 for all x ∈ X and hence that f ≤ 0 (where this 0 is the zero function
on X).

E will have many vector subspaces which are also vector lattices under the same order,
and these will obviously be Archimedean too. For example, we could take the bounded
functions and, if X has a topology, the continuous functions or continuous bounded
functions.

Theorem 2.51 ([Meyer-Nieberg, 1991]). An elementary inequality is true in every Archimedean
vector lattice if and only if it is true in the reals.

The idea of the proof relies on the result being true for uniformly complete vector lattices
(page 66 of [Meyer-Nieberg, 1991]) and the fact that all Archimedean vector lattices may
be embedded as sublattices of a certain uniformly complete vector lattice ([Schaefer, 1974,
Proposition 1.10]), their Dedekind completion, from which the general result follows.

Proposition 2.52. Every normed vector lattice E is Archimedean. In particular, every Banach
lattice is Archimedean.

Proof. Consider x, y ∈ E such that nx ≤ y for all n ∈ N. Hence x+ ≤ n−1y+ for every
n ∈ N. If E is a normed vector lattice, then ‖x+‖ ≤ n−1 ‖y+‖. Hence x+ = 0 and x ≤ 0.

Corollary 2.53. If an elementary inequality is true in the reals, then it is true in every Banach
lattice.

Proof. This is an immediate consequence of Theorem 2.51 and Proposition 2.52
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2.3 Ideals and bands

In this section we will introduce ideals and bands, two very important concepts on vector
lattices. Most of the definitions shown below can be found in [Wickstead, 2007] and some
proofs for the following properties related to them that exceeded the interest of this Chapter
are in Section 1.2 of [Meyer-Nieberg, 1991]. In the end of this Section we will get to a
specific corollary from a theorem, Freudenthal’s Spectral theorem, that will be essential for
one of our main results from Chapter 4.

Definition 2.54. An ideal J in a vector lattice E is a vector subspace such that y ∈ J ,
x ∈ E and |x| ≤ |y| together imply that x ∈ J .

Example 2.55. c0 is an ideal in l∞ because of the Squeeze Theorem but c is not as
|((−1)n)| ≤ (1) ∈ c but ((−1)n) /∈ c.

Definition 2.56. Let A be a non-empty subset of a vector lattice E. The ideal generated by
A is the smallest ideal in E containing A.

Definition 2.57. A principal ideal in a vector lattice E is an ideal J which is generated by
a single element i.e., there exists e ∈ E+ such that

J = {x : |x| ≤ ne for some n ∈ N} =
⋃
n∈N

[−ne, ne],

which is often denoted by Ee. If e ∈ E is such that Ee = E, e is termed an order unit for E.

Definition 2.58. If e is an order unit for E then the expression

‖x‖e = inf{λ ≥ 0 : |x| ≤ λe}

is a norm on the Archimedean vector lattice E and is referred to as the order unit norm
generated by e. Remember that on Proposition 2.52 we saw that any Banach lattice is
Archimidean. If E was not Archimedean, this would only be a semi-norm.

Example 2.59. The supremum norm on C(K) is precisely the order unit norm generated
by 1K .

Proposition 2.60. Assume that E is a Banach lattice and let e ∈ E+ be an order unit for E.
In this case the norms ‖·‖ and ‖·‖e are equivalent.

Proof. See [Meyer-Nieberg, 1991, 1.2.14].

Definition 2.61. A band in a vector lattice E is an ideal J with the property that if A ⊆ J
and x is the supremum of A in E then x ∈ J .

Example 2.62. If I is any subset of N then {(xn) ∈ l∞ : xn = 0 ∀n ∈ I} is a band in l∞,
but c0 is not a band as the unit ball in c0 has supremum (1) in l∞ which does not lie in c0.

Definition 2.63. A principal band is one which is generated by a single element i.e., a
principal ideal that is a band.
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Definition 2.64. A band B in a vector lattice E is a projection band if E = B ⊕Bd. In this
case the linear projection PB : E → B that takes x + y to x for any x ∈ B, y ∈ Bd is the
band projection onto B.

Proposition 2.65. Let Bz1 and Bz2 be two principal projection bands in a vector lattice
E generated by disjoint elements z1 and z2, and let Pz1 and Pz2 be their respective band
projections. Then if the principal band in E generated by z1 + z2 is a projection band, its band
projection is Pz1 + Pz2 .

Proof. First, we fix x ∈ E and express x = Pz1(x)+Pz2(x)+y where y = x−Pz1(x)−Pz2(x).
We just need to prove that y ∈ Bd

z1+z2 and therefore the result follows.
For any z′1 ∈ Bz1 and z′2 ∈ Bz2 it is

0 ≤ |z′1| ∧ |Pz2(x)| ≤ n′1z1 ∧ n2z2

0 ≤ |z′2| ∧ |Pz1(x)| ≤ n′2z2 ∧ n1z1

for some positive numbers n1, n2, n
′
1, n
′
2 ∈ N. Now by Lemma 2.30, n′1z1 ∧ n2z2 = 0 and

n′2z2 ∧ n1z1 = 0 so consequently z′1 ∧ Pz2(x) = 0 and z′2 ∧ Pz1(x) = 0. Thus, Pz2(x) ∈ Bd
z1

and Pz1(x) ∈ Bd
z2 .

By definition of band projection we have{
x− Pz1(x) = y + Pz2(x) ∈ Bd

z1

Pz2(x) ∈ Bd
z1

⇒ y ∈ Bd
z1

{
x− Pz2(x) = y + Pz1(x) ∈ Bd

z2

Pz1(x) ∈ Bd
z2

⇒ y ∈ Bd
z2 .

Hence, as Bd
z1 ∩B

d
z2 = Bd

z1∨z2 (|z|∧ (z1∨z2) = (|z|∧z1)∨|z|∧z2), it is y ∈ Bd
z1∨z2 = Bd

z1+z2 ,
where we used Lemma 2.29 and the fact that z1 and z2 are positive and disjoint.

Definition 2.66. A vector lattice E is called σ-Dedekind complete if every order bounded
increasing sequence has a supremum in E.

Definition 2.67. If every principal band in a vector lattice E is a projection band, then E
is said to have the principal projection property.

Proposition 2.68. Every dual Banach lattice E∗ is σ-Dedekind complete. In particular, every
bidual Banach lattice E∗∗ is σ-Dedekind complete.

Proof. Let us consider an order bounded above sequence in E∗

x∗1 ≤ x∗2 ≤ ... ≤ x∗n ≤ ... ≤ x∗0.

Then for every x ∈ E we have

x∗1(x) ≤ x∗2(x) ≤ ... ≤ x∗n(x) ≤ ... ≤ x∗0(x),

which is an increasing and bounded above sequence in R and hence it converges to its
supremum. Thus, we are able to define x∗(x) := supx∗n(x) = limx∗n(x) which is a valid
supremum for our original sequence.
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Proposition 2.69. Every σ-Dedekind complete vector lattice has the principal projection
property.

Proof. See [Meyer-Nieberg, 1991, 1.2.11].

Corollary 2.70. Every bidual Banach lattice E∗∗ has the principal projection property.

Proof. It is a direct consequence of Propositions 2.68 and 2.69.

Definition 2.71. For every e ∈ E+ let Q(e) = {v ∈ E+ : v ∧ (e− v) = 0} be the collection
of all quasi units with respect to e.

Proposition 2.72. For a vector lattice E, we fix 0 6= e ∈ E+.

(i) u ∨ v ∈ Q(e) for all u, v ∈ Q(e).

(ii) For all u, v ∈ Q(e) let δ(u, v) = 1 if u ∧ v 6= 0 and δ(u, v) = 0 if u ∧ v = 0.

If v1, ..., vr ∈ Q(e), then there exist finitely many disjoint z1, ..., zm ∈ Q(e) such that

vj =

m∑
i=1

δ(vj , zi)zi

for all j = 1, ..., r.

Proof. See [Meyer-Nieberg, 1991, 1.2.17].

2.3.1 Freudenthal’s Spectral theorem

Theorem 2.73 (Freudenthal’s Spectral theorem). Assume that the vector lattice E has the
principal projection property and 0 6= e ∈ E+. For every x ∈ Ee and ε > 0 there exist finitely
many v−r, ..., v−1, v0, v1, ..., vr ∈ Q(e) and m ∈ N such that∥∥∥∥∥mr

r∑
i=1−r

i(vi − vi−1)− x

∥∥∥∥∥
e

≤ ε.

Proof. See [Meyer-Nieberg, 1991, 1.2.18].

By all the aforementioned definitions and consequent properties, we are able to derive
a better version of the theorem that will be useful later when proving our main result.

Note that we can use Proposition 2.72 (ii) to transform the set v−r, ..., v−1, v0, v1, ..., vr
from Theorem 2.73 into the pairwise disjoint set z1, . . . , zm, such that every vi can be
expressed as a sum of elements of it. Then by Proposition 2.72 (i) and Lemma 2.29 we
know that z′ = z1 + ...+ zm = z1 ∨ ... ∨ zm ∈ Q(e) and hence the element zm+1 = e− z′ is
also in Q(e).

Corollary 2.74. Let E be a Banach lattice. Suppose we have ε > 0 and 0 6= e ∈ E∗∗+ . Then,
for every x ∈ E∗∗e there exist pairwise disjoint z1, . . . , zm+1 ∈ E∗∗+ with e = z1 + · · ·+ zm+1

and
d(x, span{z1, . . . , zm+1}) < ε.
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2.4 Hahn-Banach theorem for positive operators

Theorem 2.75 (Extension for Positive Operators). Let F be a Banach lattice and U be a
sublattice of F . Every positive linear operator T : U → R such that T (x) ≤ ‖x‖ for every
x ∈ U extends to a positive linear operator S : F → R satisfying ‖S‖ ≤ 1.

Proof. See [Meyer-Nieberg, 1991, 1.5.7].

Corollary 2.76. Let F be a Banach lattice and let K be the positive part of the closed unit
ball of F ∗, BF ∗ .

(i) If x ∈ F+ then there exists some positive operator x∗ ∈ F ∗ with ‖x∗‖ ≤ 1, that is, some
positive operator x∗ ∈ K, such that ‖x‖ = x∗(x)

(ii) For every x ∈ F

‖x‖ = ‖ |x| ‖ = sup{x∗(|x|) : x∗ ∈ K} = max{x∗(|x|) : x∗ ∈ K}

Proof. For (i), we apply the Extension for Positive Operators Theorem to U := Ix where
I = [0, 1] ⊂ R and T (ax) = a ‖x‖ ≤ ‖x‖.

(ii) is a consequence of |x∗(x)| ≤ ‖x‖ ‖x∗‖ and Lemma 2.39.
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CHAPTER 3
Universal injective Banach space

for the class of all separable
Banach spaces

3.1 Banach-Alaoglu theorem

In this chapter some results that are needed for its main theorem, the Banach-Mazur
theorem, will be introduced. All of these were found in [Albiac and Kalton, 2016].

Lemma 3.1. Let X be a normed vector space. The closed unit ball of X∗, BX∗ , endowed with
the relative weak∗ topology is a Hausdorff space.

Proof. The dual space X∗ endowed with the weak∗ topology is Hausdorff because for any
x∗, y∗ ∈ X∗ such that x∗ 6= y∗ there must exist some z ∈ X such that x∗(z) 6= y∗(z) so
then we can assume without loss of generality that there is some ζ with x∗(z) < ζ < y∗(z).
Hence, the open sets defined as {w∗ ∈ X∗ : w∗(z) < ζ} and {w∗ ∈ X∗ : w∗(z) > ζ} are
disjoint neighborhoods of x∗ and y∗, respectively. As a consequence, by Proposition 1.11,
BX∗ is also Hausdorff.

Lemma 3.2. Let X be a separable space. The closed unit ball of X, BX , is also a separable
space.

Proof. Let (xn)∞n=1 be dense in X. We state that (xn)∞n=1∩ B̂ is dense in BX , where B̂ is the
open unit ball of X. Let V be an arbitrary open subset of BX , then V = U ∩BX where U is
an open subset of X. Then U ∩ B̂ ⊂ V is open in X so there exists some xn ∈ U ∩ B̂ ⊂ V
as we wanted to see.

Lemma 3.3. Let (X, ‖·‖) a normed linear space over R and y∗ : BX → R a bounded mapping
such that:

(i) y∗(λx) = λy∗(x) for every x ∈ BX and real λ such that λx ∈ BX .

(ii) y∗(x1 + x2) = y∗(x1) + y∗(x2) for every x1, x2 ∈ BX such that x1 + x2 ∈ BX
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Then there exists some z∗ : X → R bounded linear operator (z∗ ∈ X∗) such that z∗|BX = y∗.

Proof. We state that the mapping z∗ : X → R defined as z∗(x) = ‖x‖ · y∗( x
‖x‖) when x 6= 0

and z∗(0) = 0 accomplishes the conditions aforementioned. First, as
∥∥∥ x
‖x‖

∥∥∥ = 1
‖x‖ · ‖x‖ = 1,

then x
‖x‖ ∈ BX and it is well defined. If x ∈ BX then ‖x‖ = 1 and z∗(x) = y∗(x) so z∗|BX =

y∗. Moreover, z∗ is bounded because ‖z∗‖ = supx∈BX
{z∗(x)} = supx∈BX

{y∗(x)} = ‖y∗‖
and y∗ is bounded. Lastly, we check that z∗ is a linear operator:

• For any x ∈ X and real λ,

z∗(λx) = ‖λx‖ · y∗( λx

‖λx‖
) = |λ| · λ

|λ|
· ‖x‖ · y∗( x

‖x‖
) = λ · z∗(x)

where we used that λx
‖λx‖ = λ

|λ| ·
x
‖x‖ ∈ BX

• For any x1, x2 ∈ X,

z∗(x1 + x2) = ‖x1 + x2‖ · y∗(
x1 + x2

‖x1 + x2‖
) = ‖x1 + x2‖ · (y∗(

x1

‖x1 + x2‖
) + y∗(

x2

‖x1 + x2‖
))

= ‖x1‖ · y∗(
x1

‖x1‖
) + ‖x2‖ · y∗(

x2

‖x2‖
)) =z∗(x1) + z∗(x2)

where we used that x1
‖x1+x2‖ ,

x2
‖x1+x2‖ ∈ BX and that x1

‖x1+x2‖ = ‖x1‖
‖x1+x2‖ ·

x1
‖x1‖ ,

x2
‖x1+x2‖ =

‖x2‖
‖x1+x2‖ ·

x2
‖x2‖ .

Theorem 3.4 (Banach-Alaoglu theorem). If X is a Banach space then the closed unit ball of
X∗, BX∗ , is compact for the relative weak∗ topology.

Proof. We first consider the function

δBX
: X∗ → RBX

x∗ 7→ (x∗(x))x∈BX

This is continuous for the weak∗ and the product topologies because every component
function is continuous by definition of weak∗ topology (see 1.41).

Now as |x∗(x)| ≤ ‖x∗‖ · ‖x‖ = 1, by taking the restriction δBX
|BX∗ we obtain the

continuous mapping

δBX
|BX∗ : BX∗ ⊂ X∗ → [−1, 1]BX ⊂ RBX

x∗ 7→ (x∗(x))x∈BX

Let Ô be an open set for the relative weak∗ topology on BX∗ . Then Ô must be a union
of basic open sets, so Ô = ∪∞n=1Bn ∩BX∗ where Bn is basic on X∗. Its image by δBX

|BX∗

is the set {(x∗(x))x∈BX
: x∗ ∈ Ô} ⊂ [−1, 1]BX but, more precisely, it is

{(x∗(x))x∈BX
: x∗ ∈ ∪∞n=1Bn} ∩ [−1, 1]BX = ∪∞n=1{(x∗(x))x∈BX

: x∗ ∈ Bn} ∩ [−1, 1]BX .
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As every term {(x∗(x))x∈BX
: x∗ ∈ Bn} ∩ [−1, 1]BX is the intersection of an open set

in the product topology (definition 1.41) and [−1, 1]BX , it is an open set in the relative
product topology and its union must be open. Thus, δBX

|BX∗ is open.
Lastly, the function δBX

|BX∗ must be injective because if x∗ 6= y∗ then there must be
some ϕ in X such that x∗(ϕ) 6= y∗(ϕ). If x∗(x) = y∗(x) for every x ∈ BX , we have

x∗(ϕ) = ‖ϕ‖ · x∗( ϕ

‖ϕ‖
) = ‖ϕ‖ · y∗( ϕ

‖ϕ‖
) = y∗(ϕ)

which is an absurd. Note that here we used the fact that ϕ
‖ϕ‖ ∈ BX .

Now by Proposition 1.18, δBX
|BX∗ is an homeomorphism into its image and so the

unit ball of X∗ is homeorphic to a subset K of [−1, 1]BX , which is compact by Tychonoff’s
Theorem (1.16).

The fact that K is closed in [−1, 1]BX will finish our reasoning, as this means that BX∗
is compact on the weak∗ topology by Proposition 1.6 and the fact that compactness is a
topological property (see Proposition 1.9).

But it is easy to see that if y∗ ∈ [−1, 1]BX\δBX
(BX∗) then it must be a (bounded)

mapping y∗ : BX → [−1, 1] with y∗ 6= z∗|BX
for any z∗ ∈ X∗. By Lemma 3.3, this is

equivalent to split this condition into two feasible cases:

• y∗(λx) 6= λy∗(x) for some x ∈ BX and real λ such that λx ∈ BX . By defining
the set of mappings {z∗ : BX → [−1, 1] : z∗(λx) ∈ (y∗(λx) − ε, y∗(λx) + ε), z∗(x) ∈
(y∗(x)− ε, y∗(x) + ε)} for a certain ε > 0 such that z∗(λx) 6= λz∗(x), we obtain a basic
open set in the product topology of [−1, 1]BX that contains y∗ and is contained in
[−1, 1]BX\δBX

(BX∗), as we wanted to prove.

• y∗(x1 + x2) 6= y∗(x1) + y∗(x2) for some x1, x2 ∈ BX such that x1 + x2 ∈ BX . Again,
the set of mappings {z∗ : BX → [−1, 1] : z∗(x1 + x2) ∈ (y∗(x1 + x2)− ε, y∗(x1 + x2) +

ε), z∗(x1) ∈ (y∗(x1) − ε, y∗(x1) + ε), z∗(x2) ∈ (y∗(x2) − ε, y∗(x2) + ε)} for a certain
value ε > 0 is an open neighborhood of y∗.

Hence, K is closed, and this completes the proof.

Theorem 3.5. If X is a separable Banach space then the closed unit ball of X∗, BX∗ , is
metrizable for the relative weak∗ topology.

Proof. Let us take D := (xi)
∞
i=1 dense in the unit ball BX of X (see Lemma 3.2). Note that

the proof relies on Corollary 1.22.
We define the topology ρ induced on X∗ by convergence on each xi. Precisely, a base of

neighborhoods for ρ at a point x∗0 ∈ X∗ is given by sets of the form

Vε(x
∗
0;x1, ..., xN ) = {x∗ ∈ X∗ : |x∗(xi)− x∗0(xi)| < ε, i = 1, ..., N},

where ε > 0 and N ∈ N. This topology is clearly weaker than the weak∗ topology, as its
basic elements belong to the weak∗ topology basis (see Definition 1.41), and is Hausdorff
on BX∗ by the same reasoning as in Lemma 3.1, so it coincides with the weak∗ topology on
the weak∗ compact set BX∗ (Banach-Alaoglu, Theorem 3.4).
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If we now define the mapping

δD : X∗ → RD

x∗ 7→ (x∗(xi))
∞
i=1

we can state that it will be continuous by the same argument as in the previous proof:
every component function is continuous by definition of ρ topology.

Now we see that the function δD must be injective because if x∗ 6= y∗ then there must
be some ϕ in X such that x∗(ϕ) 6= y∗(ϕ). If x∗(xi) = y∗(xi) for every xi in D, then we have

|x∗( ϕ

‖ϕ‖
)− y∗( ϕ

‖ϕ‖
)| ≤ |x∗( ϕ

‖ϕ‖
)− x∗(xi)|+ |y∗(xi)− y∗(

ϕ

‖ϕ‖
)|

= |x∗( ϕ

‖ϕ‖
− xi)|+ |y∗(xi −

ϕ

‖ϕ‖
)|

As the set D is dense in BX , we can always find some xi such that |xi − ϕ
‖ϕ‖ | < ε for

any given ε > 0. Hence, making it tend to zero we would have x∗( ϕ
‖ϕ‖) = y∗( ϕ

‖ϕ‖) or
equivalently x∗(ϕ) = y∗(ϕ) which is an absurd.

By Theorem 1.21, δD|BX∗ is a topological embedding and (BX∗ , ρ) is homeomorphic to
some subset of RD. This gives that ρ is metrizable due to Proposition 1.17.

3.2 Banach-Mazur theorem

Theorem 3.6 (Banach-Mazur theorem). The Banach space C[0, 1] is injectively universal
for the class of all separable Banach spaces. That is, any separable Banach space X embeds
isometrically into C[0, 1].

Proof. The proof will be a direct consequence of the following two facts:

Fact 1. If X is a separable Banach space, then there exists a compact, Hausdorff and
metrizable space K such that X embeds isometrically into C(K).

Indeed, we take K := BX∗ = BX∗ [0, 1] with the relative weak∗ topology (topology
induced by the weak∗ topology of X∗ on BX∗). If X is a separable Banach space, then by
Theorems 3.4 and 3.5 we know K is compact and metrizable. Moreover, by Lemma 3.1, K
is also Hausdorff. If we now consider the mapping

j : X → C(K)

x 7→ j(x)

where

j(x) : K → R
f 7→ f(x)

38



(remember that this is the natural embedding of a Banach space in its second dual from
Definition 1.41) it is easy to see that it is linear (note that K ⊂ X∗) and that

‖j(x)‖ = sup{‖j(x)(f)‖ : f ∈ K} = sup{‖f(x)‖ : f ∈ BX∗} = ‖x‖

by using Hahn-Banach theorem (more precisely, Corollary 1.43). Thus, j is an isometric
embedding from X into C(K).

Fact 2. If K is a compact, Hausdorff and metrizable space, then C(K) embeds isomet-
rically into C[0, 1].

We split the proof of this statement into some steps:

1. If K is a compact, Hausdorff and metrizable space, then K embeds homeomorphically
into [0, 1]N by Proposition 1.31.

2. If E is a closed subset of [0, 1], then C(E) embeds isometrically into C[0, 1].
To show this, we define a linear extension operator A : C(E) → C[0, 1] so that
A(f)|E = f for all f ∈ C(E). Notice that as [0, 1]\E is open in [0, 1], it can be written
as a countable disjoint union of relatively open intervals. To see this, note that for
any x ∈ [0, 1]\E there must exist some open interval I such that x ∈ I ⊂ [0, 1]\E. If
there exists one such interval, then there exists one “largest” interval which contains
x (the union of all such intervals). Denote by {Ix}x∈[0,1]\E the family of all such
maximal intervals. These intervals Ix are pairwise disjoint (otherwise they would
not be maximal) and every interval contains a rational number, so therefore there
can only be a countable number of intervals in the family. Thus, we may extend f
to be affine on each such interval interior to [0, 1] and to be constant on any such
interval containing an endpoint of [0, 1]. This procedure clearly gives an isometry
as A is linear and preserves the norm (in E it behaves as the identity function an
outside of E it is affine or constant).

3. We are ready now to complete the proof of Fact 2 and, therefore, of the theorem.
Let ψ be the continuous surjection from ∆ to [0, 1]N given on Proposition 1.27 and
let us consider K as a closed subset of [0, 1]N (by Step 1 we are able to regard it as a
subset of [0, 1]N, which we now would be closed by Proposition 1.12). It follows that
if E := ψ−1(K), then E is homeomorphic to a (closed) subset of [0, 1] (it is clear that
E is a closed subset of ∆, and now by Proposition 1.25 this result follows). Then,
by Step 2, C(E) embeds isometrically into C[0, 1]. Finally, f 7→ f ◦ ψ embeds C(K)

isometrically into C(E) and, therefore, C(K) embeds isometrically into C[0, 1] after
composition of both isometries.
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Observation 3.7. Note that this proof also shows that X embeds isometrically into C(∆).
At first sight, both domains are equally useful, but in the extended version for Banach
lattices just the Cantor Set will be valid.

Lastly, we present an example of two Banach lattices that aren’t comparable, that is,
none can be lattice-isometrically embedded into the other, to make evident the need of
a stronger version of this theorem for Banach lattices in which another universal injetive
space is used, and to justify the existence of our next section.

Example 3.8. The spaces C[0, 1] and L1[0, 1] are not comparable being regarded as Banach
lattices.

Proof. It suffices to show that the spaces C(C) ⊂ C[0, 1] and L1[0, 1] are not comparable
being regarded as Banach lattices.

First, let us assume that there exists some Banach lattice isomorphism

T : C(C)→ X ⊂ L1[0, 1]

and let us denote the (continuous) constant function in 1 defined in C as 1.
For a fixed n > 0, we divide the interval [0, 1] into equal subintervals of length 1

3n

where the k-th subinterval will be called Ik, for k ∈ {1, ..., 3n}. The (continuous) constant
function in 1 defined in Ik ∩ C when the set is not empty will be denoted as 1k. Note that
these are 2n positive and disjoint functions such that

1 =

2n∑
k=1

1k.

Thus, as ‖x‖C(C) ≤
∥∥T−1

∥∥
op
· ‖T (x)‖L1

and
∥∥T−1

∥∥
op

= ‖T‖−1
op ; we have

‖T (1)‖L1
=

∥∥∥∥∥T
(

2n∑
k=1

1k

)∥∥∥∥∥
L1

=

∥∥∥∥∥
2n∑
k=1

T (1k)

∥∥∥∥∥
L1

=

2n∑
k=1

‖T (1k)‖L1
≥ ‖T‖op ·

2n∑
k=1

‖1k‖C(C) = 2n · ‖T‖op .

Since ‖T (1)‖L1
≤ ‖T‖op · ‖1‖C(C) = ‖T‖op < ∞, therefore making n tend to infinity

we get ‖T (1)‖L1
=∞, a contradiction.

Secondly, let us assume the existence of some lattice homomorphism

S : L1[0, 1]→ C(C)

and let us denote the constant function in 1 defined in [0, 1] as 1.
For a fixed n > 0, we divide the interval [0, 1] into equal subintervals of length 1

n where
the k-th subinterval will be called Ik, for k ∈ {1, ..., n}. The constant function in 1 defined
in Ik will be denoted as 1k. Note that these are n positive and disjoint functions such that

1 =
n∨
k=1

1k.
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Now since ‖S(x)‖C(C) ≤ ‖S‖op · ‖x‖L1
, it must be

‖S(1)‖C(C) =

∥∥∥∥∥S
(

n∨
k=1

1k

)∥∥∥∥∥
C(C)

=

∥∥∥∥∥
n∨
k=1

S(1k)

∥∥∥∥∥
C(C)

=
n∨
k=1

‖S (1k)‖C(C) ≤ ‖S‖op ·
1

n
.

Then making n tend to infinity we get ‖S(1)‖C(C) = 0, which is absurd because S being
injective and linear would mean that 1 = 0.
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CHAPTER 4
Universal injective Banach lattice

for the class of all separable
Banach lattices

In this chapter our main aim is to expose a proof for the first theorem that can be found in
the article Separable Universal Banach Lattices by Leung-Li-Oikhberg-Tursi. For this, we first
showed its analogous version for Banach spaces in Chapter 3.

4.1 Preliminaries

Definition 4.1. Let An, n ∈ N, be finite non-empty sets and let T̂ be
⋃∞
k=0

∏k
n=1An, where,

as usual, the product
∏k
n=1An is defined to be ∅ if k = 0. Suppose that σ = (a1, ..., ak) ∈∏k

n=1An; we say that σ has length k and write |σ| = k. For any b ∈ Ak+1, we denote the
element (a1, ..., ak, b) ∈

∏k+1
n=1An by (σ, b).

Example 4.2. The previous illustration shows a tree where ai,j is the j-th element in Ai,
for j = 1, ...ni.

Definition 4.3. Let E be a Banach lattice. A family (xσ)σ∈T̂ is said to be a finitely branching
tree in E+ if
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(i) xσ ∈ E+ for all σ ∈ T̂

(ii) For any σ ∈ T̂ with |σ| = k, (x(σ,b))b∈Ak+1
is pairwise disjoint and

xσ =
∑

b∈Ak+1

x(σ,b).

Example 4.4. The following illustration shows the first three levels of a finitely branching
tree where E = C[0, 1].

Observation 4.5. Note that the set (x(σ,b))b∈Ak+1
can be seen as a partition of xσ by

condition (ii). Thus, by induction, each level of a finitely branching tree (that is, {xσ : |σ| =
k} for a certain k ∈ N) must be a partition of x∅ .

Lemma 4.6. Let (xσ)σ∈T̂ be a finitely branching tree in E+, then span{xσ : σ ∈ T̂} is a
vector sublattice of E.

Proof. We just need to see that for any x, y ∈ S := span{xσ : σ ∈ T̂} it is x ∨ y ∈ S and
x ∧ y ∈ S.

For any x ∈ S, then by Observation 4.5 one can derive that x ∈ span{xσ : |σ| = n} for
a sufficiently large n ∈ N. Analogously, for y ∈ S, we have y ∈ span{xσ : |σ| = m} for a
certain m ∈ N.

Without loss of generality, let m ≤ n. Then both x, y ∈ span{xσ : |σ| = n} and we can
express x =

∑
|σ|=n cσ · xσ, y =

∑
|σ|=n dσ · xσ for some cσ, dσ ∈ R.

Using Proposition 2.34, we have
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x ∨ y =
∑
|σ|=n

(cσ ∨ dσ) · xσ and x ∧ y =
∑
|σ|=n

(cσ ∧ dσ) · xσ,

and hence our proof is complete.

4.2 Main result

Lemma 4.7. Let f, g : D → R be two continuous real functions with 0 ≤ f(x) ≤ g(x) ≤ 1,
for every x ∈ D. The composition given by χ[f(x),g(x)] for every x ∈ D is a continuous function
from D to L1.

Proof. The scheme

D R2 L1

x (f(x), g(x)) χ[f(x),g(x)]

i j

is continuous because of being a composition of continuous functions. The function i is
continuous because its components are continuous by hypothesis.

Now for any (x, y) and (x′, y′) in the image of i, we have

dL1

(
j(x, y), j(x′, y′)

)
=
∥∥j(x, y)− j(x′, y′)

∥∥
L1

=
∥∥χ[x,y] − χ[x′,y′]

∥∥
L1

=∫
R
|χ[x,y](t)− χ[x′,y′](t)|dt ≤ |x− x′|+ |y − y′| ≤ 2

√
|x− x′|2 + |y − y′|2 =

2 ·
∥∥(x, y)− (x′, y′)

∥∥
2

= 2 · d2

(
(x, y), (x′, y′)

)
It is obvious that this gives that j is continuous an the result follows.

Proposition 4.8. Let E be a Banach lattice. Suppose that there is a finitely branching tree
(xσ)σ∈T̂ in E+ so that E is the closed linear span of (xσ)σ∈T̂ . Then there exists a compact
metric space K so that E is a lattice isometric to a closed sublattice of C(K,L1).

Proof. Obviously, under the given assumption, E is a separable Banach lattice as the set
span{xσ : σ ∈ T̂} is dense in E by hypothesis and T̂ is countable by definition.

Let K be the positive part of the closed unit ball of E∗, BE∗ , endowed with the relative
weak∗ topology. Now we take Kc = BE∗\K and see that it is open in BE∗ . Let x∗ ∈ Kc,
then it must be x∗(x) < 0 for some x ≥ 0. For a small enough ε > 0, if |x∗(x)− y∗(x)| < ε

then also y∗(x) < 0 for that same x ≥ 0. By taking Wε(x
∗;x) ∩ BE∗ where Wε(x

∗;x) is
a basic neighborhood of x∗ on E∗ endowed with the weak∗ topology described as on
Definition 1.41, we obtain a relatively open neighborhood of x∗ contained in Kc. Thus, K
is a compact metrizable topological space by Proposition 1.6 and Theorems 3.4 and 3.5.

By rescaling if necessary, we may assume that ‖x∅‖ ≤ 1.
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For each σ ∈ T̂ , the function gσ : K → R given by gσ(x∗) = x∗(xσ) is nonnegative
(as every x∗ ∈ K and xσ ∈ E+) and continuous on K by definition of weak∗ topology.
Furthermore, for all σ ∈ T̂ with |σ| = k, it follows from property (ii) and the fact that every
x∗ ∈ K is linear that

gσ =
∑

b∈Ak+1

g(σ,b). (4.1)

We now define functions fσ : K → L1 inductively, for every σ ∈ T̂ , as follows. Let
f∅(x

∗) = χ[0,g∅(x∗)], and note that χ[0,g∅(x∗)] ⊂ L1[0, 1], as ‖x∅‖ ≤ 1 implies g∅(x∗) =

|x∗(x∅)| ≤ 1. By the continuity of g∅ and Lemma 4.7, we see that f∅ is a continuous
function from K into L1.

In general, assume that fσ has been defined so that fσ(x∗) = χ[c(x∗),d(x∗)], where
c, d : K → R are nonnegative continuous functions so that d− c = gσ. Label the elements
in Ak+1 as b1, ..., br. Define f(σ,bi)(x

∗), 1 ≤ i ≤ r, to be the characteristic function of the
interval c(x∗) +

i−1∑
j=1

g(σ,bj)(x
∗), c(x∗) +

i∑
j=1

g(σ,bj)(x
∗)

 .
By continuity of c and g(σ,bj), and by Lemma 4.7, f(σ,bi) is a continuous function from

K into L1 for each i. This completes the inductive definition of fσ, for every σ ∈ T̂ .
Next step is to state the following:

fσ =
∑

b∈Ak+1

f(σ,b) if |σ| = k (4.2)

(equality in the L1 sense at each x∗ ∈ K). To see this, note that for every x∗ ∈ K this is
a sum of characteristic functions which are defined in disjoint intervals. Moreover, these
intervals overlap leaving no space in between.

The previous illustration displays the idea, and follows from 4.1. Hence, the sum will
result in the characteristic function defined in the total interval, that is, χ[c(x∗),d(x∗)], which
is fσ(x∗) as we wanted to show.

We see that the map xσ 7→ fσ, for every σ ∈ T̂ , extends to a linear map u from
span{xσ : σ ∈ T̂} into C(K,L1). Let x ∈ span{xσ : σ ∈ T̂}, which by Observation 4.5
can be expressed as x =

∑
|σ|=k cσxσ for some k ∈ N and cσ ∈ R. We define u(x) as∑

|σ|=k cσfσ. This is well defined because any other expression for x involving a different
length k gives an equivalent expression for u(x), by making use of (ii) and 4.2.
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It remains to show that u is linear. To see this, we prove that the map preserves the
sums. For any x, y ∈ span{xσ : σ ∈ T̂}, as before we are able to express x =

∑
|σ|=n cσ · xσ

and y =
∑
|σ|=n dσ · xσ for sufficiently large n ∈ N and some cσ, dσ ∈ R. Then clearly

u(x+ y) = u(x) + u(y).

To see that the map u is a lattice homomorphism, we first check that if σ and τ are
distinct elements in T̂ of the same length, then fσ(x∗) ∧ fτ (x∗) = 0 (in L1). By induction
on the length, for |σ| = |τ | = 0 this is true by vacuity, as it would mean that σ = τ = ∅.
Now let us assume it holds for a length n and take |σ| = |τ | = n+ 1.

• If σ = (a1, ..., an, bi) and τ = (a1, ..., an, bj) for some bi, bj ∈ An+1, then fσ and
fτ must be characteristic functions defined in disjoint intervals. Hence, clearly
fσ(x∗) ∧ fτ (x∗) = 0.

• If, on the other hand, σ = (σ̂, bi) and τ = (τ̂ , bj) for some bi, bj ∈ An+1 where σ̂
and τ̂ are distinct, then by the inductive hypothesis fσ̂(x∗) ∧ fτ̂ (x∗) = 0 and now by
Observation 4.5 and (4.2) it is fσ(x∗) ∧ fτ (x∗) = 0.

Now for any distinct x, y ∈ span{xσ : σ ∈ T̂}, we have x =
∑
|σ|=n cσ · xσ and

y =
∑
|σ|=n dσ ·xσ for sufficiently large n ∈ N and some cσ, dσ ∈ R. Because of the previous

observation we can use Proposition 2.34 on the set {fσ : |σ| = n} and state

u(x ∧ y) = u

∑
|σ|=n

(cσ ∧ dσ) · xσ

 =
∑
|σ|=n

(cσ ∧ dσ) · fσ = u(x) ∧ u(y).

Hence the fact that u preserves the infima follows. As u preserves the infima, it must
preserve the suprema as x ∨ y = −(−x) ∧ (−y). Thus, because of the fact that span{xσ :

σ ∈ T̂} is a sublattice of E by Lemma 4.6, the map u is a lattice homomorphism.

Next, we show that u is an (into) isometry. Let x ∈ span{xσ : σ ∈ T̂}. Again by
Observation 4.5 we write x =

∑
|σ|=k cσxσ for some k ∈ N and cσ ∈ R. Then |x| =∑

|σ|=k |cσ|xσ by Corollary 2.35 and

|u(x)| = u(|x|) =
∑
|σ|=k

|cσ|fσ.

By construction, ‖fσ(x∗)‖L1
= gσ(x∗) = x∗(xσ). Since K is the positive part of the ball

of E∗ and applying Lemma 2.39 and Corollary 2.76, one can derive that
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‖u(x)‖ = ‖ |u(x)| ‖ = sup
x∗∈K

∥∥∥∥∥∥
∑
|σ|=k

|cσ|fσ(x∗)

∥∥∥∥∥∥
L1

= sup
x∗∈K

∑
|σ|=k

|cσ| · ‖fσ(x∗)‖L1

= sup
x∗∈K

∑
|σ|=k

|cσ|x∗(xσ) = sup
x∗∈K

x∗

∑
|σ|=k

|cσ|xσ


= sup

x∗∈K
x∗(|x|) = ‖ |x| ‖

= ‖x‖ .

Hence u is a lattice isometry from span{xσ : σ ∈ T̂} into C(K,L1).
As span{xσ : σ ∈ T̂} is dense in E by assumption, we see that u extends to a lattice

isometry from E into C(K,L1). As for any x ∈ E there must exist a sequence (xn) ⊂
span{xσ : σ ∈ T̂} such that limn xn = x, we may define u(x) = limn u(xn). For this,
we need to show that such limit exists and does not depend on the chosen sequence.
First, u(xn) is convergent because of being a Cauchy sequence inside a Banach lattice (u
is an isometry on span{xσ : σ ∈ T̂}, so ‖u(xn)− u(xm)‖ = ‖u(xn − xm)‖ = ‖xn − xm‖
where xn is convergent by hypothesis and hence Cauchy). Also, given other sequence
(x′n) ⊂ span{xσ : σ ∈ T̂} convergent to the same x, we would have ‖u(xn)− u(x′n)‖ =

‖u(xn − x′n)‖ = ‖xn − x′n‖ ≤ ‖xn − x‖ + ‖x′n − x‖ which must tend to zero. Thus, this
is well defined and it is obvious that all the properties extend to u as the limit preserves
them.

Lemma 4.9. Let (xn) be a sequence in a Banach space. Then, if
∑∞

n=1 ‖xn‖ converges,∑∞
n=1 xn also converges.

Proof. By the triangle inequality we have, for any n and p ≥ 1,∥∥∥∥∥
n+p∑
k=1

xk −
n∑
k=1

xk

∥∥∥∥∥ ≤
∣∣∣∣∣
n+p∑
k=1

‖xk‖ −
n∑
k=1

‖xk‖

∣∣∣∣∣ .
By hypothesis the sequence

∑n
k=1 ‖xk‖ converges and is therefore a Cauchy sequence. By

the inequality above,
∑n

k=1 xk is a Cauchy sequence and will converge to an element of the
Banach lattice by completeness.

Proposition 4.10. Let E be a separable Banach lattice, regarded as a closed sublattice of
its bidual E∗∗. There is a Banach lattice F such that E ⊆ F ⊆ E∗∗, F+ contains a finitely
branching tree (xσ)σ∈T̂ and span{xσ : σ ∈ T̂} is dense in F .

Proof. Let (ei)
∞
i=1 be a countable dense subset of E consisting of nonzero vectors 1.

1Note that we can assume every vector to be nonzero because in case the null vector belongs to our set
we can substitute it by the sequence {( 1

n
)}n so that every vector that was close from 0 will also be close to a

certain 1
n

for a big enough n ∈ N.
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We shall construct recursively a finitely branching tree (xσ)σ∈T̂ in E∗∗+ so that, for any
1 ≤ m ≤ n,

d(em, span{xσ : |σ| = n}) < 2−n.

Then the proposition follows by taking F to be the closed linear span of (xσ)σ∈T̂ in E∗∗, as
the previous condition guarantees that E ⊆ F . For any given x ∈ E and ε > 0, there must
exist some em such that dist(x, em) < ε, but for a big enough n it is also

d(x, span{xσ : |σ| = n}) ≤ d(x, em) + d(em, span{xσ : |σ| = n}) < ε

and hence x belongs to the closed linear span of (xσ)σ∈T̂ , that is, x ∈ F .
Start the construction by setting A0 = ∅ and

x∅ = e =
∞∑
i=1

|ei|
2i ‖ei‖

.

This series is convergent as

∞∑
i=1

∥∥∥∥ |ei|2i ‖ei‖

∥∥∥∥ =

∞∑
i=1

‖ei‖
|2i| ‖ei‖

=

∞∑
i=1

1

2i
=

∞∑
i=1

(
1

2

)i
= 1

(see Lemma 4.9).
Suppose that n ∈ N ∪ {0} and the sets A0, A1, ..., An and vectors xσ ∈ E∗∗+ (|σ| ≤ n)

have already been selected so that condition (ii) from the definition of finitely branching
tree above is satisfied for every σ with |σ| < n. In particular, by Observation 4.5,∑

|σ|=n

xσ = e.

Since for all 1 ≤ i ≤ n+ 1,

|ei| = 2i ‖ei‖ ·
|ei|

2i ‖ei‖
≤ 2i ‖ei‖ ·

∞∑
i=1

|ei|
2i ‖ei‖

= 2i ‖ei‖ · e,

ei lies in the principal ideal generated by e in E∗∗.
By Freudenthal’s Spectral Theorem 2.74 applied to ε = 2−(n+1) and x = em, there exist

mutually disjoint z1, ..., zN ∈ E∗∗+ so that z1 + ...+ zN = e, and

d(em, span{z1, ..., zN}) < 2−(n+1)

for 1 ≤ m ≤ n+ 1.
Denote by Pi the band projection from E∗∗ onto the band generated by zi in E∗∗,

1 ≤ i ≤ N . Note that we can do so because of the fact that every bidual Banach lattice has
the principal projection property (see 2.70).

Let An+1 = {1, ..., N}; for σ ∈
∏n
k=1Ak and i ∈ An+1, let x(σ,i) = Pi(xσ). Now by

Proposition 2.65 we can argue that
∑N

i=1 Pi is clearly the band projection onto B, where B
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is the band generated by e in E∗∗, noting that z1 + ... + zN = e. Also, since xσ lies in B
(we just saw that xσ ≤ e), we have

xσ = PB(xσ) =
N∑
i=1

Pi(xσ) =
∑

i∈An+1

x(σ,i).

This completes the inductive construction of (xσ)σ∈T̂ , where T̂ =
⋃∞
k=0

∏k
n=1An. Clearly,

(xσ)σ∈T̂ is a finitely branching tree in E+.
Furthermore, in the notation above,

zi = Pi(e) =
∑
|σ|=n

Pi(xσ) =
∑
|σ|=n

x(σ,i) ,

so span{z1, ..., zN} ⊆ span{xσ : |σ| = n+ 1}. Thus, for 1 ≤ m ≤ n+ 1,

d(em, span{xσ : |σ| = n+ 1}) ≤ d(em, span{z1, ..., zN}) < 2−(n+1).

Theorem 4.11. The Banach lattice C(∆, L1) is injectively universal for the class of all separa-
ble Banach lattices. That is, any separable Banach lattice E embeds lattice isometrically into
C(∆, L1).

Proof. By Propositions 4.8 and 4.10, there are a compact metric space K and a lattice
isometry u from E into C(K,L1) (note that F is lattice isometric to a closed sublattice of
C(K,L1) and E ⊆ F ). It is well known that there exists a continuous surjection π : ∆→ K

(see Proposition 1.32). Then the map j : E → C(∆, L1) given by j(x) = u(x) ◦ π is a lattice
isometry as so it is u and π is a surjection:

‖j(x)‖ = ‖u(x) ◦ π‖ = sup
y∈∆
‖u(x)(π(y))‖L1

= sup
z∈K
‖u(x)(z))‖L1

= ‖u(x)‖ = ‖x‖ .

Observation 4.12. Recalling Example 3.8, it is not surprising that the resulting universal
injective Banach lattice for the class of all separable Banach lattices is a combination of
both C[0, 1] and L1[0, 1].
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Web Resources

Math.StackExchange

Mathematics Stack Exchange is a question and answer site for people studying math at any
level and professionals in related fields.
https://math.stackexchange.com/

• Any open subset of R is a countable union of disjoint open intervals

• C be a closed subset of the Cantor set ∆. Show the existence of a continuous function
f : ∆→ C s.t. f(x) = x, x ∈ C

• Cantor set: Lebesgue measure and uncountability

• Prove if X is a compact metric space, then X is separable

• Show that the countable product of metric spaces is metrizable

• The product of Hausdorff spaces is Hausdorff

ProofWiki

ProofWiki is an online compendium of mathematical proofs. Their goal is the collection,
collaboration and classification of mathematical proofs.
https://proofwiki.org/

• Bijection is Open iff Closed

• Bijection is Open iff Inverse is Continuous

• Closed Subspace of Compact Space is Compact

• Compact Subspace of Hausdorff Space is Closed

• Continuous Bijection from Compact to Hausdorff is Homeomorphism
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• Continuous Image of Compact Space is Compact

• Definition:Metrizable Topology

• T2 Property is Hereditary
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